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Background
A bit about Andrew’s work...

◎ Many different domains
◎ Trading & risk systems

◎ PhD on software components

◎ Riot Games
◎ Hulu
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Microservices 
Work!

But make sure you prepare for the challenges...
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1. Microservices in Gaming

2. Microservices for Video

3. Believe the Hype

4. Believe the Challenges
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1.
Microservices in 
Gaming
A microservice architecture

@ scale
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League of Legends

◎ Here you have a list of items
◎ And some text
◎ But remember not to overload your slides 

with content

Your audience will listen to you or read the 
content, but won’t do both. 
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@ Scale
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Gaming Particulars

◎ Low latency

◎ Need to match up players = shared state

◎ Rapid development cycles

◎ Lots of engineers working on 1 game
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1A.
Winning the War
Evolving from a monolith
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Evolving the Architecture

◎ 2009: Large service monolith
○ Matchmaking, game selection, inventory etc

◎ 2012: Started evolving to microservices
○ http://bit.ly/evolving-league 

10

http://bit.ly/evolving-league


Front End Box

League of Legends
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platform.war

Distributed in-memory cache

       MySQL

Matchmaking Game Server Mgr

   platform.warplatform.warplatform.war    platform.warplatform.war

       MySQL



Microservices for New Features
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Platform

platform.war

Distributed in-memory cache

                MySQL

Service 
Proxy / API

                
MySQL

    Match Making

tb.jar

Cache



REST                                                      SWAGGER

      Dashboards Service Discovery    Config Service

Standard Infrastructure
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    Client of Service

    Metrics

Client REST 
library

S/W Load 
Balancer

                          Service

     Metrics

Server REST 
library HTTP Server



1B.
Keeping the Peace
Held back by remains of the 
monolith
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Not Quite Free of the Monolith...
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Platform

● Inventory
● Stats
● Summoner details

Distributed in-memory cache

                MySQL                 
MySQL

    Microservice

Cache



Ouch - Hitting the Wall
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If We Could Redo?

◎ Decouple state completely
○ Inventory service
○ Catalog service
○ Runes service

◎ Socialize to get prioritization

◎ Simplify infrastructure
○ Config System too “clever”
○ Too much “smarts” in fat libraries
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2.
Microservices for 
Internet Video
Hundreds of tiny pieces...
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Hulu

◎ 2016: Full microservices architecture
○ Evolved / replaced existing VOD architecture
○ Live TV
○ 20m+ total subs
○ 1m+ live subs

◎ 15 month development!
○ 800+ microservices

http://bit.ly/hulu-landscape 
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http://bit.ly/hulu-landscape


Video System Particulars

◎ Lots of caching to support browsing

◎ TV show metadata needed everywhere

◎ Real-time playback to support live TV

◎ Lots of integration (billing, ads etc)
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Infrastructure for Microservices
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         Donki PaaS

        Apps     Github      Jenkins
        Apps

        Apps

       Redis 
       Cluster

       MySQL 
       Cluster

  Provisioning System

        Apps
        Apps

        VMs

Load 
Balancers

         DNS

     Statsd
     Graphite



Microservice Ownership
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Playback team Browse team Recording team Etc...

     

          

     

     

          

     

     

     

     
     

     
     



Data Distribution Pattern
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     Master

     Cache      Cache     Cache     Cache

Ingestion + Admin

Reading

Pub-sub / 
read-through



Scaling for Launch Day
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Browse Queries Per Second

College kids falling asleep 
with XBOX on!



2B.
Keeping the Peace
Every issue gets magnified...
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Arch / Ops Dashboard
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Login Browse & Search Playback Ads DVR … etcPlayback



http://bit.ly/hulu-scaling

Scaling For Growth
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http://bit.ly/hulu-scaling


Circuit Breakers avoid Firestorms

28

A B C

X

YY

X

A B C

 Z



Cross-Cutting Requirements

29



Cloud versus DC

◎ Could target cloud or DC
○ But no elasticity, must overprovision

◎ Abstracting cloud & DC
== Lowest common denominator

◎ Hard to do proper blue-green in DC
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3.
Believe the Hype
The many benefits of microservices

31



They Actually Work!

◎ Ownership & Independence

◎ Development velocity

◎ Operational & Development scaling
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They Actually Work!

◎ Granular deployment

◎ Evolution

◎ Organizational alignment
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4.
Believe the Challenges
Standing on the shoulders of 
constantly improving infrastructure...
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Common CICD + Operating Env

Runtime Infra
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     Build + CICD

   Operational Infra

Deploy & 
Rollback

Jenkins 
Spinnaker / Harness
Terraform

K8s, istio
Stackdriver

Cloud!



Cloud Approach

Preferred approach
◎ Pick one cloud provider (per workflow?)
◎ Consider costs early
◎ Multi-region, multi-account on day 1

Cloud has so many advantages over DC
◎ Elasticity
◎ Easy environments (blue-green)
◎ Better shared services (db, queues etc)

◎
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Circuit Breakers by Default!
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API Gateways
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Gateway

     Service    Service Envoy

     
   API Docs



Platforms

For things that need holistic treatment
… but still allow self-service

◎ Load testing
◎ Billing
◎ Browse caching
◎ A / B testing
◎ UI layout
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Takeaways

Microservices offer many benefits
◎ Isolation & independence
◎ Granular deployment, scaling & evolution

Use infra to protect against common issues
◎ Full CICD
◎ Infrastructure as code
◎ Circuit breakers to prevent firestorms
◎ Istio to help with monitoring + more
◎ Cloud elasticity FTW
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Thanks for Listening!
Any questions?
andrew.mcveigh@gmail.com
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AMA
Decomposing the Monolith
Tues 2:55pm Boardroom C
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Scaling For Growth

43But look out!!!


