
Microservices

From Winning the War
…To Keeping the Peace

Andrew McVeigh
QConSF October 2018

Background
A bit about Andrew’s work...

◎ Many different domains
◎ Trading & risk systems

◎ PhD on software components

◎ Riot Games
◎ Hulu

2

Microservices
Work!

But make sure you prepare for the challenges...

3

1. Microservices in Gaming

2. Microservices for Video

3. Believe the Hype

4. Believe the Challenges

4

1.
Microservices in
Gaming
A microservice architecture

@ scale

5

League of Legends

◎ Here you have a list of items
◎ And some text
◎ But remember not to overload your slides

with content

Your audience will listen to you or read the
content, but won’t do both.

6

@ Scale

7

Gaming Particulars

◎ Low latency

◎ Need to match up players = shared state

◎ Rapid development cycles

◎ Lots of engineers working on 1 game

8

1A.
Winning the War
Evolving from a monolith

9

Evolving the Architecture

◎ 2009: Large service monolith
○ Matchmaking, game selection, inventory etc

◎ 2012: Started evolving to microservices
○ http://bit.ly/evolving-league

10

http://bit.ly/evolving-league

Front End Box

League of Legends

11

platform.war

Distributed in-memory cache

 MySQL

Matchmaking Game Server Mgr

 platform.warplatform.warplatform.war platform.warplatform.war

 MySQL

Microservices for New Features

12

Platform

platform.war

Distributed in-memory cache

 MySQL

Service
Proxy / API

MySQL

 Match Making

tb.jar

Cache

REST SWAGGER

 Dashboards Service Discovery Config Service

Standard Infrastructure

13

 Client of Service

 Metrics

Client REST
library

S/W Load
Balancer

 Service

 Metrics

Server REST
library HTTP Server

1B.
Keeping the Peace
Held back by remains of the
monolith

14

Not Quite Free of the Monolith...

15

Platform

● Inventory
● Stats
● Summoner details

Distributed in-memory cache

 MySQL
MySQL

 Microservice

Cache

Ouch - Hitting the Wall

16

If We Could Redo?

◎ Decouple state completely
○ Inventory service
○ Catalog service
○ Runes service

◎ Socialize to get prioritization

◎ Simplify infrastructure
○ Config System too “clever”
○ Too much “smarts” in fat libraries

17

2.
Microservices for
Internet Video
Hundreds of tiny pieces...

18

Hulu

◎ 2016: Full microservices architecture
○ Evolved / replaced existing VOD architecture
○ Live TV
○ 20m+ total subs
○ 1m+ live subs

◎ 15 month development!
○ 800+ microservices

http://bit.ly/hulu-landscape

19

http://bit.ly/hulu-landscape

Video System Particulars

◎ Lots of caching to support browsing

◎ TV show metadata needed everywhere

◎ Real-time playback to support live TV

◎ Lots of integration (billing, ads etc)

20

Infrastructure for Microservices

21

 Donki PaaS

 Apps Github Jenkins
 Apps

 Apps

 Redis
 Cluster

 MySQL
 Cluster

 Provisioning System

 Apps
 Apps

 VMs

Load
Balancers

 DNS

 Statsd
 Graphite

Microservice Ownership

22

Playback team Browse team Recording team Etc...

Data Distribution Pattern

23

 Master

 Cache Cache Cache Cache

Ingestion + Admin

Reading

Pub-sub /
read-through

Scaling for Launch Day

24

Browse Queries Per Second

College kids falling asleep
with XBOX on!

2B.
Keeping the Peace
Every issue gets magnified...

25

Arch / Ops Dashboard

26

Login Browse & Search Playback Ads DVR … etcPlayback

http://bit.ly/hulu-scaling

Scaling For Growth

27

http://bit.ly/hulu-scaling

Circuit Breakers avoid Firestorms

28

A B C

X

YY

X

A B C

 Z

Cross-Cutting Requirements

29

Cloud versus DC

◎ Could target cloud or DC
○ But no elasticity, must overprovision

◎ Abstracting cloud & DC
== Lowest common denominator

◎ Hard to do proper blue-green in DC

30

3.
Believe the Hype
The many benefits of microservices

31

They Actually Work!

◎ Ownership & Independence

◎ Development velocity

◎ Operational & Development scaling

32

They Actually Work!

◎ Granular deployment

◎ Evolution

◎ Organizational alignment

33

4.
Believe the Challenges
Standing on the shoulders of
constantly improving infrastructure...

34

Common CICD + Operating Env

Runtime Infra

35

 Build + CICD

 Operational Infra

Deploy &
Rollback

Jenkins
Spinnaker / Harness
Terraform

K8s, istio
Stackdriver

Cloud!

Cloud Approach

Preferred approach
◎ Pick one cloud provider (per workflow?)
◎ Consider costs early
◎ Multi-region, multi-account on day 1

Cloud has so many advantages over DC
◎ Elasticity
◎ Easy environments (blue-green)
◎ Better shared services (db, queues etc)

◎

36

Circuit Breakers by Default!

37

API Gateways

38

Gateway

 Service Service Envoy

 API Docs

Platforms

For things that need holistic treatment
… but still allow self-service

◎ Load testing
◎ Billing
◎ Browse caching
◎ A / B testing
◎ UI layout

39

Takeaways

Microservices offer many benefits
◎ Isolation & independence
◎ Granular deployment, scaling & evolution

Use infra to protect against common issues
◎ Full CICD
◎ Infrastructure as code
◎ Circuit breakers to prevent firestorms
◎ Istio to help with monitoring + more
◎ Cloud elasticity FTW

40

Thanks for Listening!
Any questions?
andrew.mcveigh@gmail.com

41

AMA
Decomposing the Monolith
Tues 2:55pm Boardroom C

42

Scaling For Growth

43But look out!!!

