
Java Team

JDK 8 LTS to the latest
Performance and Responsiveness
Prospective

Anil Kumar

Datacenter Performance

Anil.Kumar@intel.com

@RajputAnilK

Monica Beckwith

JVM Performance

java-performance@Microsoft

@mon_beck

* All trademarks are the property of their respective owners

mailto:java-performance@Microsoft
mailto:java-performance@Microsoft

Pre-production deployment

0.00

0.50

1.00

1.50

2.00

Full capacity metric Operational range metric

Run to run variability (Normalized)

Worst run Best run

QCon SFO 2019

What test is running?

Thousands of apps from

small data footprint (Heap 2GB)

to

very large data footprint (Heap 100GB)

Test: a representative benchmark !
QCon SFO 2019

Deployment environment?

JVM

App

Hypervisor/

Guest OSContainer

OS1 2 3

QCon SFO 2019

Deployment environment?

QCon SFO 2019

JVM

App

Hypervisor/

Guest OSContainer

OS1 2 3

CPU threads?

Container,

Guest OS policies,

Pinning

Heap memory?

Guest OS policies,

Memory fragmentation,

Transparent large pages

Agenda

JDK 8 LTS to latest high level changes

Data using various benchmarks

Explanation for expected and/or strange behaviors

Summary

QCon SFO 2019

JDK 8 LTS to the latest …

Monitoring, code readability and debugging

New usages

Containers FaaS (Function as a Service)

Microservices Polyglot programming

Performance

Concurrency → Fork/Join → Parallel Streams → Project Loom

Value Types

Networking: Java I/O → NIO → Netty

QCon SFO 2019

Java SE JDK 8 as base for normalization

Currently most use Java SE ?

QCon SFO 2019

Avoid workloads with high variability

Java* JMH* Benchmark

Configuration setting “-f 1 -wi 3 -w 5s -i 2 -r 15s -t 1”

QCon SFO 2019

org.openjdk.bench.java.util.stream.AllMatcher.seq_filter_findFirst 1.0x Run 1

org.openjdk.bench.java.util.stream.AllMatcher.seq_filter_findFirst 1.5x Run 2

org.openjdk.bench.vm.lambda.invoke.Function1.mref_bndLL_IL 1.0x Run 1

org.openjdk.bench.vm.lambda.invoke.Function1.mref_bndLL_IL 1.5x Run 2

* All trademarks are the property of their respective owners

Avoid heap allocation variability

Significant impact can result from variable heap allocation

For larger than 20GB heaps

System in use for long time

Transparent large pages in use

QCon SFO 2019

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60
SPECjvm2008 components (Heap size impact JDK 11) jdk11_20G jdk11_60G

* All trademarks are the property of their respective owners

Performance: Throughput

JDK 8 LTS vs. 11 LTS vs. 12 vs. 13 compare

SPECjvm2008: compute + memory

JDK 11 LTS, 12 and 13 > JDK 8 LTS

6 minutes execution time for each worklet (sufficient optimization time)

QCon SFO 2019

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

SPECjvm2008 (Normalized to JDK 8) JDK 8 JDK 11 JDK 12 JDK 13

Command line option for SPECjvm2008

RUN_OPTS="-showversion"

${JAVA} ${RUN_OPTS} -jar SPECjvm2008.jar -ict -coe \

startup.helloworld startup.compress startup.crypto.aes startup.crypto.rsa startup.crypto.signverify \

startup.mpegaudio startup.scimark.fft startup.scimark.lu startup.scimark.monte_carlo startup.scimark.sor \

startup.scimark.sparse startup.serial startup.sunflow startup.xml.transform startup.xml.validation \

compress crypto.aes crypto.rsa crypto.signverify derby mpegaudio scimark.fft.large scimark.lu.large \

scimark.sor.large scimark.sparse.large scimark.fft.small scimark.lu.small scimark.sor.small \

scimark.sparse.small scimark.monte_carlo serial sunflow xml.transform xml.validation

Performance,
Responsiveness, and
Variability

JDK 8 LTS vs. 11 LTS vs. 12 vs. 13 compare

SPECjbb*2015: quick summary

Rough estimation of

high bound settled

performance

QCon SFO 2019

max-jOPS

(Full system capacity)

critical-jOPS

(Responsiveness)

* All trademarks are the property of their respective owners

SPECjbb2015: JDK 8 LTS → JDK 11 LTS

QCon SFO 2019

0.00

0.25

0.50

0.75

1.00

1.25

1.50

JDK 8 LTS JDK 11 LTS JDK 12 JDK 13

SPECjbb2015 Full System Capacity Responsiveness

Full system capacity improved up to ~5%

Responsiveness improved up to ~35%

"-Xmx150g –Xms150g -Xmn130g"

* All trademarks are the property of their respective owners

Variability: JDK 8 LTS → JDK 11 LTS

QCon SFO 2019

JDK 11 LTS significantly less variability than JDK 8 LTS for responsiveness

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

SPECjbb2015

JDK 8 LTS
Full System Capacity Responsiveness

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

SPECjbb2015

JDK 11 LTS

Full System Capacity Responsiveness

0

5

10

15

JDK 8 LTS JDK 11 LTS

% STD Dev Full System Capacity Responsiveness

* All trademarks are the property of their respective owners

DaCapo micro-benchmark: FaaS

QCon SFO 2019

Several components

execution time as small as

500ms

Startup is similar

Execution time with

JDK 11 LTS > JDK 8 LTS

(G1GC ?) 0.00

0.50

1.00

1.50

2.00

JDK 11 LTS / JDK 8 LTS (execution time) Warmup Measurement

0

5000

10000

15000

20000

25000

30000

One iteration time (in ms) JDK 8 LTS JK 11 LTS

Better

* All trademarks are the property of their respective owners

GC Groundwork

Heap Layout

Heap

Z GC

Shenandoah GC

Young Generation
G1 GC

Old Generation

G1 Heap Regions

Occupied and Free Regions

O O O O O O O O O O

O O O O O O O O O O

O O O O O O O O O O

O O O O

O O O O

O O O O

• List of free regions

• In case of generational heap (like G1), the occupied regions could be young, old or humongous

GC Commonalities

From To

HeapFrom Space To Space

O O O O O O O O O O

O O O O O O O O O O

O O O O O O O O O O

GC ROOTS

THREAD

1 STACK

THREAD

N STACK

STATIC
VARIABLES

ANY JNI
REFERENCES

Copying Collector aka Compacting Collector aka
Evacuation

O O O O O O O O O O

O O O O O O O O O O

O O O O O O O O O O

GC ROOTS

THREAD

1 STACK

THREAD

N STACK

O O

O O

O

STATIC
VARIABLES

ANY JNI
REFERENCES

O
O

O
O

O

O O O O O O O O O O

O O O O O O O O O O

O O O O O O O O O O

Copying Collector aka Compacting Collector aka
Evacuation

Copying Collector aka Compacting Collector aka
Evacuation

O O O O O O O O

O O O O O O O

O O O O O O O

O O O

O O O

O O

GC Differences

GCs

Garbage Collectors Parallel GC G1 GC Shenandoah GC Z GC

Regionalized? No Yes Yes Yes

Generational? Yes Yes No No

Compaction? Yes, STW,

Forwarding

address in header

Yes, STW,

Forwarding

address in header

Yes, Concurrent,

Forwarding

Pointer

Yes, Concurrent,

Colored

Pointers

Target Pause Times? Throughput

driven

200ms 10ms 10ms

Concurrent Marking

Algorithm?

No SATB SATB Striped

Performance!

GC Performance
Throughput and Responsiveness – Higher is Better

100%
96%

135%
132%

122% 122%
119%

91% 93%

124%
120%

116% 116% 114%

48%

56%
52% 54%

49% 47% 48%

0%

20%

40%

60%

80%

100%

120%

140%

160%

shenandoah z parallel, base+ng parallel, base+xmng1, base+ng+pauseg1, base+ng+pausesg1, base+ng+pause

Max Throughput Throughput under response time constraints Responsiveness

AOT Groundwork

OpenJDK JIT Compilation (prior to Tiered Compilation)

Tiered Compilation without AOT

https://devblogs.microsoft.com/java/aot-compilation-in-hotspot-introduction/

https://devblogs.microsoft.com/java/aot-compilation-in-hotspot-introduction/

Tiered Compilation with AOT

https://devblogs.microsoft.com/java/aot-compilation-in-hotspot-introduction/

https://devblogs.microsoft.com/java/aot-compilation-in-hotspot-introduction/

Performance!

AOT Performance
JVM 2008 – Higher is Better

85%

90%

95%

100%

105%

110%

115%

wo AOT AOT AOT with tiered

G1 GC and
Humongous Objects

What Constitutes a Humongous Object?

What Constitutes a Humongous Region?

Humongous Objects

DaCapo Performance Issue

© Copyright Microsoft Corporation. All rights reserved.

