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Pre-production deployment 
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What test is running?

Thousands of apps from 

small data footprint (Heap 2GB)

to 

very large data footprint  (Heap 100GB)

Test: a representative benchmark !
QCon SFO 2019



Deployment environment?
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Deployment environment?
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JVM

App

Hypervisor/

Guest OSContainer

OS1         2       3

CPU threads?

Container, 

Guest OS policies, 

Pinning

Heap memory?

Guest OS policies, 

Memory fragmentation, 

Transparent large pages



Agenda

JDK 8 LTS to latest high level changes

Data using various benchmarks 

Explanation for expected and/or strange behaviors

Summary
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JDK 8 LTS to the latest …

Monitoring, code readability and debugging

New usages

Containers FaaS (Function as a Service)

Microservices Polyglot programming 

Performance

Concurrency → Fork/Join → Parallel Streams → Project Loom 

Value Types 

Networking: Java I/O → NIO → Netty
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Java SE JDK 8 as base for normalization

Currently most use Java SE ?
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Avoid workloads with high variability 

Java* JMH* Benchmark

Configuration setting “-f 1 -wi 3 -w 5s -i 2 -r 15s -t 1”

QCon SFO 2019

org.openjdk.bench.java.util.stream.AllMatcher.seq_filter_findFirst 1.0x Run 1

org.openjdk.bench.java.util.stream.AllMatcher.seq_filter_findFirst 1.5x Run 2

org.openjdk.bench.vm.lambda.invoke.Function1.mref_bndLL_IL 1.0x Run 1

org.openjdk.bench.vm.lambda.invoke.Function1.mref_bndLL_IL 1.5x Run 2

* All trademarks are the property of their respective owners



Avoid heap allocation variability 

Significant impact can result from variable heap allocation

For larger than 20GB heaps

System in use for long time

Transparent large pages in use

QCon SFO 2019
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Performance: Throughput

JDK 8 LTS vs. 11 LTS vs. 12 vs. 13 compare



SPECjvm2008: compute + memory

JDK 11 LTS, 12 and 13 > JDK 8 LTS

6 minutes execution time for each worklet (sufficient optimization time)

QCon SFO 2019

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

SPECjvm2008 (Normalized to JDK 8) JDK 8 JDK 11 JDK 12 JDK 13



Command line option for SPECjvm2008

RUN_OPTS="-showversion"

${JAVA} ${RUN_OPTS} -jar SPECjvm2008.jar -ict -coe \

startup.helloworld startup.compress startup.crypto.aes startup.crypto.rsa startup.crypto.signverify \

startup.mpegaudio startup.scimark.fft startup.scimark.lu startup.scimark.monte_carlo startup.scimark.sor \

startup.scimark.sparse startup.serial startup.sunflow startup.xml.transform startup.xml.validation \

compress crypto.aes crypto.rsa crypto.signverify derby mpegaudio scimark.fft.large scimark.lu.large \

scimark.sor.large scimark.sparse.large scimark.fft.small scimark.lu.small scimark.sor.small \

scimark.sparse.small scimark.monte_carlo serial sunflow xml.transform xml.validation



Performance, 
Responsiveness, and 
Variability

JDK 8 LTS vs. 11 LTS vs. 12 vs. 13 compare



SPECjbb*2015: quick summary

Rough estimation of 

high bound settled 

performance

QCon SFO 2019
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SPECjbb2015: JDK 8 LTS → JDK 11 LTS
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Full system capacity improved up to ~5%

Responsiveness improved up to ~35%

"-Xmx150g –Xms150g -Xmn130g"
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Variability: JDK 8 LTS → JDK 11 LTS
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JDK 11 LTS significantly less variability than JDK 8 LTS for responsiveness
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DaCapo micro-benchmark: FaaS
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GC Groundwork



Heap Layout

Heap

Z GC

Shenandoah GC

Young Generation
G1 GC

Old Generation



G1 Heap Regions



Occupied and Free Regions
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• List of free regions

• In case of generational heap (like G1), the occupied regions could be young, old or humongous



GC Commonalities
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Copying Collector aka Compacting Collector aka 
Evacuation
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GC Differences



GCs

Garbage Collectors Parallel GC G1 GC Shenandoah GC Z GC

Regionalized? No Yes Yes Yes

Generational? Yes Yes No No

Compaction? Yes, STW, 

Forwarding 

address in header

Yes, STW, 

Forwarding 

address in header

Yes, Concurrent, 

Forwarding 

Pointer

Yes, Concurrent, 

Colored 

Pointers

Target Pause Times? Throughput 

driven

200ms 10ms 10ms

Concurrent Marking 

Algorithm?

No SATB SATB Striped



Performance!



GC Performance
Throughput and Responsiveness – Higher is Better
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AOT Groundwork



OpenJDK JIT Compilation (prior to Tiered Compilation)



Tiered Compilation without AOT

https://devblogs.microsoft.com/java/aot-compilation-in-hotspot-introduction/

https://devblogs.microsoft.com/java/aot-compilation-in-hotspot-introduction/


Tiered Compilation with AOT

https://devblogs.microsoft.com/java/aot-compilation-in-hotspot-introduction/

https://devblogs.microsoft.com/java/aot-compilation-in-hotspot-introduction/


Performance!



AOT Performance
JVM 2008 – Higher is Better
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G1 GC and 
Humongous Objects



What Constitutes a Humongous Object?



What Constitutes a Humongous Region?



Humongous Objects



DaCapo Performance Issue
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