
Experiences with 

Apache Beam

Dan Debrunner

Programming Model Architect – IBM Streams

STSM, IBM





Background

To define my point of view …



IBM Streams brief history

 2002 – IBM Research/DoD joint research project – System S

 2002-2009 – Multiple releases to development partners

 2008 – IBM Software Group adopts project for product 

release

 2009 – First release of IBM Streams (née IBM InfoSphere

Streams)

 2009-… – Multiple releases of IBM Streams

 2015 – Streaming Analytics managed service on IBM Cloud

 2017 – Inclusion in IBM Watson Data Platform



IBM Streams:

High volume, low latency, continuous 

streaming analytics

 React to each event as it occurs

 Customer: “If you have to write it to disk you’ve 

already lost”

 Maintain current state of thousands to millions of 

entities

 Context of Now!

 Analytics run 24/7



IBM Streams programming models

 SPL (Streams Processing Language) –

 Domain specific language

 Operators, streams, windows

 Data flow graph with cycles allowed

 Toolkits with analytical & adapters operators

 Structured tuples – similar to database table definition

 stream<rstring id, timestamp ts, float64 value>

 Java/Scala/Python

 Typical source, map, filter, flat map, for each, aggregate functional api

 Integration with SPL

 Streams Designer – High-level visual pipeline creator

 Microservice approach

 Topic based publish/subscribe model for streams



Building an Apache Beam Java runner

for IBM Streams

 1.0 supporting Apache Beam 2.0 Java SDK 

released early November 2017



Why?

 Potential single “standard” programming model 

for streaming applications



Some concerns

 Beam may not become the/a standard streaming api

 Real-world adoption of Beam not apparent

 Is the model too focused on event-time?

 Can it address scenarios our customers need



Potential upside

 Somewhat early in lifecyle, can we (IBM) & others help 

drive Beam to be the standard api



Terminology “confusion”

 “ParDo” – ParallelDo – but seemed little discussion about 
what parallel meant

 Sliding windows – Not the same as our definition – seems 
strange that fixed/sliding distinction while fixed is a sub-
class of sliding.

 Unaligned windows <-> partitioned windows

 Watermarks – “Magic”

 microsecond or millisecond

 Partition – Split

 Bounded/unbounded – batch/streaming



The good …

 SDK package well documented

 One page concept tutorials good

 The runners.core package significantly simplifies the 

runner implementation, which helped us to quickly get 

started.

 Large number of core tests that could be run to verify our 

runner

 The number of IO connectors keep growing



Some “bad” …

 Documentation in the runners package could be 

improved

 Not all concepts have one page tutorials

 Initially many specific to pre-Beam Google Data Flow.

 Real-world sample applications would help



Some “bad” …

 Redundancy between View/Combine transformations 

 Lack of tests for IO connectors slowed development

 Backwards compatibility

 Unexpected classes not found after moving from Beam 2.0 to 2.1

 Many features marked experimental

 What happened to 1.x?

 No mechanism to capture pipeline source locations

 Footprint - ~60MB of dependencies

 Probably a shame didn’t start with Java 8



Just different?

 Streams runner can just produce a Streams Application 
Bundle (sab file)

 Self contained application

 Configured through submission parameters and “application 

configurations”

 What does it mean to read metrics after creating a sab?



Python

 Streaming not yet supported

 Python 2.7!



Developing pipelines



Naïve view …

 What results are being calculated?

 Multiple outputs based upon multiple input data streams

 Real-time state per entity, with potentially multiple entities per 

event

 Where in event time?

 As soon as the event is received ..

 When in processing time?

 As soon as possible …

 How do refinements of results relate?

 Probably too late by then …



IBM Streams customer application



Pipeline configuration

 Pipeline configuration/tuning will be needed:

 Only this host has access to the data source

 Only these hosts have a $$ licensed library installed.

 Degree of parallelism

 May be better known by application developer

 How to securely access credentials?

 Streams has application configurations which hold credentials etc.

 Can be set by system admins.

 How to generically expose them in the model



Reusable analytics

 Is a model needed to allow reusable analytics against 
streaming data

 SPL has concept of toolkits

 Collection of operators, functions and types.

 Many toolkits open source at github.

 Aided by having a structured schema

 Many operators support any schema though parameters

 Most operators copy matching attributes from input to output

 E.g. geospatial operator only needs say lat,long, time, id – but any 
additional attributes are carried from input to output 
automatically.



Monitoring API

 Is a standard monitoring API needed for complete application 

portability?



Impressions

 I found the model mostly quite simple to understand, but its 

realization in the APIs made writing my first Beam app much less 

simple. That is, I thought I understood how I was going to write my 

simple but actually coding it up was more difficult than I expected. 

The reference documentation is not bad; quite good in places, a bit 

weak in others, but the API is big and there is a gap between the 

programming model overview / quickstart tutorials and the reference 

docs. Any time I wanted to do something not covered in the 

quickstart, I'd end up spending quite a bit of time looking around the 

API reference to find things that looked like they were what I was 

after, and then how to use them.



Impressions

 Builder approach makes sense

 Have to dig out the available transformations

 Generics + builders seems to lead to many levels of <> and ()

 maybe confusing Eclipse along the way

 Seemed to be able to use lambda expressions less than I wanted to

 @ProcessElement -> no auto-complete

 Sometimes seemed to have to set a coder when ideally it 
would be determined automatically

 Tuple ordering or lack of …



Vehicle Location Pipelines

 Existing streams of NextBus vehicle location data enriched with idle stats

 Create pipelines that continually monitor vehicles and agencies for idle alerts





Some Issues

 Uncorrelated streams of locations from unknown number of different 

agencies

 How to determine watermark?

 How to maintain state per-bus, per-agency, per-route

 Window/watermark woes

 Window(Last15Mins(last locations)) -> Window(Aggregate(ByAgency))

 Use of a timer implied a stateful ParDo then required a KV coder but 

not where …

 Timer/state marked experimental



If I did it again …

 First try to better understand windowing/grouping 

concepts

 using direct runner

 using small fixed datasets



Experience Summary

 Apache Beam provides the foundation for a single model for streaming 
systems

 Transforms and builders make sense

 Documentation could be improved

 Still unclear on suitability for our customer needs

 State handling

 Non-event time apps

 Tuple order

 Configuration

 Really up to streaming framework providers to get involved in Beam 
community



The Watson & Cloud Platform

Thank You


