
High Performance Go
QConSF 2017 �
13 November 2017

Dave Cheney

Introduction

Hello, I'm David. �

I'm a software programming from Sydney, Australia. �

I'm a bit of a fan of Go. I help organise GopherCon each year, have been involved with the
Sydney Go meetup for years, and travel a lot to talk about and teach Go.

Agenda

Today we're going to take a look at techniques for writing high performance Go applications.

We're going to focus on three areas in this presentation:

Benchmarking

Performance measurement and pro�ling

Memory management and GC

The goal is to give you, the audience, the tools you need to measure and improve the
performance of your Go applications.

Benchmarking

Benchmarking

Before you can begin to tune your application, you need to establish a reliable baseline to
measure the impact of your change to know if you're making things better, or worse.

In other words, "Don't guess, measure"

This section focuses on how to construct useful benchmarks using the Go testing
framework, and gives practical tips for avoiding the pitfalls.

Benchmarking is closely related to pro�ling, which we'll touch on during this section, then
cover in more detail in the next.

Benchmarking ground rules

Before you benchmark, you must have a stable environment to get repeatable results.

The machine must be idle—don't pro�le on shared hardware, don't browse the web
while waiting for a long benchmark to run.

Watch out for power saving and thermal scaling.

Avoid virtual machines and shared cloud hosting; they are too noisy for consistent
measurements.

If you can a�ord it, buy dedicated performance test hardware. Rack it, disable all the power
management and thermal scaling and never update the software on those machines.

For everyone else, have a before and after sample and run them multiple times to get
consistent results.

Using the testing package for benchmarking

The testing package has built in support for writing benchmarks.

// Fib computes the n'th number in the Fibonacci series.
func Fib(n int) int {
 switch n {
 case 0:
 return 0
 case 1:
 return 1
 default:
 return Fib(n-1) + Fib(n-2)
 }
}

�b.go

func BenchmarkFib20(b *testing.B) {
 for n := 0; n < b.N; n++ {
 Fib(20) // run the Fib function b.N times
 }
}

�b_test.go

DEMO: go test -bench=. ./examples/fib

How benchmarks work

Each benchmark is run b.N times until it takes longer than 1 second.

b.N starts at 1, if the benchmark completes in under 1 second b.N is increased and the
benchmark run again.

b.N increases in the approximate sequence; 1, 2, 3, 5, 10, 20, 30, 50, 100, ...

% go test -bench=. ./examples/fib
BenchmarkFib20-4 30000 46408 ns/op
PASS
ok _/Users/dfc/devel/high-performance-go-workshop/examples/fib 1.910s

Beware: below the μs mark you will start to see the relativistic e�ects of instruction
reordering and code alignment.

Run benchmarks longer to get more accuracy; go test -benchtime=10s

Tip: If this is required, codify it in a Makefile so everyone is comparing apples to apples.

Comparing benchmarks

For repeatable results, you should run benchmarks multiple times.

You can do this manually, or use the -count �ag.

% go test -bench=. -count=10 | tee old.txt
goos: darwin
goarch: amd64
BenchmarkFib20-4 30000 52201 ns/op
BenchmarkFib20-4 30000 53010 ns/op
BenchmarkFib20-4 30000 50739 ns/op
BenchmarkFib20-4 30000 51434 ns/op
BenchmarkFib20-4 30000 51697 ns/op
BenchmarkFib20-4 30000 52610 ns/op
BenchmarkFib20-4 30000 53618 ns/op
BenchmarkFib20-4 30000 51615 ns/op
BenchmarkFib20-4 30000 52105 ns/op
BenchmarkFib20-4 30000 52031 ns/op
PASS
ok _/Users/dfc/devel/qconsf-2017/examples/fib 21.035s

Comparing benchmarks (cont.)

Determining the performance delta between two sets of benchmarks can be tedious and
error prone.

% go test -bench=. -count=10 | tee old.txt

DEMO: Improve Fib

% go test -bench=. -count=10 | tee new.txt

Tools like rsc.io/benchstat (https://godoc.org/rsc.io/benchstat) are useful for comparing results.

% go get -u rsc.io/benchstat
% benchstat {old,new}.txt

name old time/op new time/op delta
Fib-4 59.4µs ±11% 37.1µs ± 9% -37.56% (p=0.000 n=20+20)

Tip: p values above 0.05 are suspect, increase -count to add more samples.

https://godoc.org/rsc.io/benchstat

Avoid benchmarking start up costs

Sometimes your benchmark has a once per run setup cost. b.ResetTimer() will can be
used to ignore the time accrued in setup.

func BenchmarkExpensive(b *testing.B) {
 boringAndExpensiveSetup()
 b.ResetTimer()
 for n := 0; n < b.N; n++ {
 // function under test
 }
}

If you have some expensive setup logic per loop iteration, use b.StopTimer() and
b.StartTimer() to pause the benchmark timer.

func BenchmarkComplicated(b *testing.B) {
 for n := 0; n < b.N; n++ {
 b.StopTimer()
 complicatedSetup()
 b.StartTimer()
 // function under test
 }
}

Benchmarking allocations

Allocation count and size is strongly correlated with benchmark time.

You can tell the testing framework to record the number of allocations made by code
under test.

package q

func BenchmarkRead(b *testing.B) {
 b.ReportAllocs()
 for n := 0; n < b.N; n++ {
 // function under test
 }
}

Avoid string concatenation

Go strings are immutable. Concatenating two strings generates a third. Which of the
following is fastest?

 s := request.ID
 s += " " + client.Addr().String()
 s += " " + time.Now().String()
 r = s

 var b bytes.Buffer
 fmt.Fprintf(&b, "%s %v %v", request.ID, client.Addr(), time.Now())
 r = b.String()

 r = fmt.Sprintf("%s %v %v", request.ID, client.Addr(), time.Now())

 b := make([]byte, 0, 40)
 b = append(b, request.ID...)
 b = append(b, ' ')
 b = append(b, client.Addr().String()...)
 b = append(b, ' ')
 b = time.Now().AppendFormat(b, "2006-01-02 15:04:05.999999999 -0700 MST")
 r = string(b)

DEMO: go test -bench=. ./examples/concat

Watch out for compiler optimisations

This example comes from issue 14813 (https://github.com/golang/go/issues/14813#issue-140603392) .

const m1 = 0x5555555555555555
const m2 = 0x3333333333333333
const m4 = 0x0f0f0f0f0f0f0f0f
const h01 = 0x0101010101010101

func popcnt(x uint64) uint64 {
 x -= (x >> 1) & m1
 x = (x & m2) + ((x >> 2) & m2)
 x = (x + (x >> 4)) & m4
 return (x * h01) >> 56
}

func BenchmarkPopcnt(b *testing.B) {
 for n := 0; n < b.N; n++ {
 popcnt(uint64(n))
 }
}

How fast will this function benchmark?

% go test -bench=. ./examples/popcnt

https://github.com/golang/go/issues/14813#issue-140603392

What happened?

popcnt is a leaf function, so the compiler can inline it.

Because the function is inlined, the compiler can see it has no side e�ects, so the call is
eliminated. This is what the compiler sees:

func BenchmarkPopcnt(b *testing.B) {
 for n := 0; n < b.N; n++ {
 // optimised away
 }
}

The same optimisations that make real code fast, by removing unnecessary computation,
are the same ones that remove benchmarks that have no observable side e�ects.

This is only going to get more common as the Go compiler improves.

DEMO: show how to �x popcnt

Performance measurement and pro�ling

Performance measurement and pro�ling

testing.B is useful for microbenchmarks.

Microbenchmarks are useful for tuning the performance of a hot piece of code, but it's
impractical (and unreliable) to write a testing.B benchmark for entire programs–you'd get
more reliable results with time(1).

In this section we'll explore the pro�ling tools built into Go to investigate the operation of the
program from the inside.

pprof

The �rst tool we're going to be talking about today is pprof.

pprof (https://github.com/google/pprof) descends from the Google Perf Tools (https://github.com/gperftools/gperftools) suite.

pprof pro�ling is built into the Go runtime.

It consists of two parts:

runtime/pprof package built into every Go program

go tool pprof for investigating pro�les.

https://github.com/google/pprof
https://github.com/gperftools/gperftools

CPU pro�ling

CPU pro�ling is the most common type of pro�le, and the most obvious.

When CPU pro�ling is enabled the runtime will interrupt itself every 10ms and record the
stack trace of the currently running goroutines.

Once the pro�le is complete we can analyse it to determine the hottest code paths.

The more times a function appears in the pro�le, the more time that code path is taking as a
percentage of the total runtime.

Memory pro�ling

Memory pro�ling records the stack trace when a heap allocation is made.

Stack allocations are assumed to be free and are not tracked in the memory pro�le.

Memory pro�ling, like CPU pro�ling is sample based, by default memory pro�ling samples 1
in every 1000 allocations. This rate can be changed.

Because of memory pro�ling is sample based and because it tracks allocations not use, using
memory pro�ling to determine your application's overall memory usage is di�cult.

Other supported pro�les

Block pro�ling is similar to a CPU pro�le, but it records the amount of time a goroutine spent
waiting for a shared resource.

Block pro�ling can show you when a large number of goroutines could make progress, but
were blocked. This can be useful for determining concurrency bottlenecks in your application.
Blocking includes:

Sending or receiving on a unbu�ered channel.

Sending to a full channel, receiving from an empty one.

Trying to Lock a sync.Mutex that is locked by another goroutine.

Mutex pro�ling records the stack traces of the holder of a contended mutex.

Thread creation pro�ling records the stack traces that led to the creation of new OS threads.

These are very specialised tools and should not be used until you believe you have
eliminated all your CPU and memory usage bottlenecks.
In the interests of time, I'm only going to talk about CPU pro�ling.

One pro�le at at time

Pro�ling is not free.

Pro�ling has a moderate, but measurable impact on program performance—especially if
you increase the memory pro�le sample rate.

Most tools will not stop you from enabling multiple pro�les at once.

If you enable multiple pro�le's at the same time, they will observe their own interactions and
throw o� your results.

Do not enable more than one kind of pro�le at a time.

Pro�ling applications

The Go runtime's pro�ling interface is in the runtime/pprof package.

runtime/pprof is a very low level tool, and for historic reasons the interfaces to the di�erent
kinds of pro�le are not uniform.

A few years ago I wrote a small package, github.com/pkg/pro�le (https://github.com/pkg/pro�le) , to make it
easier to pro�le an application.

import "github.com/pkg/profile"

func main() {
 defer profile.Start().Stop()
 ...
}

Tip: pkg/profile will prevent you from enabling more than one pro�le at once.

https://github.com/pkg/profile

Pro�ling godoc

DEMO: add CPU pro�ling to godoc.

1. edit $GOPATH/src/golang.org/x/tools/cmd/godoc/main.go, add

defer profile.Start(profile.CPUProfile).Stop()

2. go install -v golang.org/x/tools/cmd/godoc
3. godoc -http=:8000
4. go tool pprof $PROFILE

Using pprof

Now that I've talked about what pprof can measure, I will talk about how to use pprof to
analyse a pro�le.

Starting with Go 1.9, pprof only requires one argument.

go tool pprof $PROFILE

Tip: If you're using Go 1.8, pprof takes two arguments and will produce the wrong result if
you give it just one. Upgrade to Go 1.9.

Using pprof (cont.)

This is a sample CPU pro�le:

% go tool pprof /tmp/c.p
Entering interactive mode (type "help" for commands)
(pprof) top
Showing top 15 nodes out of 63 (cum >= 4.85s)
 flat flat% sum% cum cum%
 21.89s 9.84% 9.84% 128.32s 57.71% net.(*netFD).Read
 17.58s 7.91% 17.75% 40.28s 18.11% runtime.exitsyscall
 15.79s 7.10% 24.85% 15.79s 7.10% runtime.newdefer
 12.96s 5.83% 30.68% 151.41s 68.09% test_frame/connection.(*ServerConn).readBytes
 11.27s 5.07% 35.75% 23.35s 10.50% runtime.reentersyscall
 10.45s 4.70% 40.45% 82.77s 37.22% syscall.Syscall
 9.38s 4.22% 44.67% 9.38s 4.22% runtime.deferproc_m
 9.17s 4.12% 48.79% 12.73s 5.72% exitsyscallfast
 8.03s 3.61% 52.40% 11.86s 5.33% runtime.casgstatus
 7.66s 3.44% 55.85% 7.66s 3.44% runtime.cas
 7.59s 3.41% 59.26% 7.59s 3.41% runtime.onM
 6.42s 2.89% 62.15% 134.74s 60.60% net.(*conn).Read
 6.31s 2.84% 64.98% 6.31s 2.84% runtime.writebarrierptr
 6.26s 2.82% 67.80% 32.09s 14.43% runtime.entersyscall

Often this output is hard to understand.

Using pprof (cont.)

A better way to understand your pro�le is to visualise it.

% go tool pprof /tmp/c.p
Entering interactive mode (type "help" for commands)
(pprof) web

Opens a web page with a graphical display of the pro�le.

images/pro�le.svg (images/pro�le.svg)

Note: visualisation requires graphviz.

I �nd this method to be superior to the text mode, I strongly recommend you try it.

pprof also supports these modes in a non interactive form with �ags like -svg, -pdf, etc. See
go tool pprof -help for more details.

Further reading: Pro�ling Go programs (http://blog.golang.org/pro�ling-go-programs)

Further reading: Debugging performance issues in Go programs (https://software.intel.com/en-

us/blogs/2014/05/10/debugging-performance-issues-in-go-programs)

http://talks.godoc.org/github.com/davecheney/qconsf-2017/images/profile.svg
http://blog.golang.org/profiling-go-programs
https://software.intel.com/en-us/blogs/2014/05/10/debugging-performance-issues-in-go-programs

Pro�ling benchmarks

The testing package has built in support for generating CPU, memory, and block pro�les.

-cpuprofile=$FILE writes a CPU pro�le to $FILE.

-memprofile=$FILE, writes a memory pro�le to $FILE, -memprofilerate=N adjusts the
pro�le rate to 1/N.

-blockprofile=$FILE, writes a block pro�le to $FILE.

Example: Running benchmarks of the bytes package.

% go test -run=XXX -bench=. -cpuprofile=c.p bytes
% go tool pprof c.p

Note: use -run=XXX to disable tests, you only want to pro�le benchmarks. You can also use -
run=^$ to accomplish the same thing.

Go Execution tracer

The execution tracer was developed by Dmitry Vyukov (https://github.com/dvyukov) for Go 1.5 and remained
under documented, and under utilised, until last year.

Unlike sample based pro�ling, the execution tracer is integrated into the Go runtime, so it
doesn't just know what a Go program is doing at a particular point in time, but why.

Captures with nanosecond precision:

goroutine creation/start/end

goroutine blocking/unblocking

network blocking

system calls

GC events

https://github.com/dvyukov

go tool trace

Before we go on there are some things we should talk about the usage of the trace tool.

The tool uses the javascript debugging support built into Chrome. Trace pro�les can only
be viewed in Chrome, they won't work in Firefox, Safari, IE/Edge. Sorry.

Because this is a Google product, it supports keyboard shortcuts; use WASD to navigate,
use ? to get a list.

Viewing traces can take a lot of memory. Seriously, 4Gb won't cut it, 8Gb is probably the
minimum, more is de�nitely better.

go tool trace (cont.)

DEMO: add an execution trace to godoc.

1. edit $GOPATH/src/golang.org/x/tools/cmd/godoc/main.go, add

defer profile.Start(profile.TraceProfile).Stop()

2. go install -v golang.org/x/tools/cmd/godoc
3. godoc -http=:8000
4. go tool trace $PROFILE

Tracing running applications

In the previous examples we ran the trace over the whole program.

As you saw, traces can be very large, even for small amounts of time, so collecting trace data
continually would generate far too much data. Also, tracing can have an impact on the speed
of your program, especially if there is a lot of activity.

What we want is a way to collect a short trace from a running program.

Fortuntately, the net/http/pprof package has just such a facility. Adding this line to your
main package:

import _ "net/http/pprof"

It will register tracing and pro�ling routes with http.DefaultServeMux.

Mandelbrot microservice

It's 2017, generating Mandelbrots is pointless unless you can o�er them on the internet as a
microsevice.

Thus, I present to you, Mandelweb

% go run examples/mandelweb/mandelweb.go
2017/09/17 15:29:21 listening on http://127.0.0.1:8080/

127.0.0.1:8080/mandelbrot (http://127.0.0.1:8080/mandelbrot)

We can grab a �ve second trace from mandelweb with curl (or wget)

curl -o trace.out http://127.0.0.1:8080/debug/pprof/trace?seconds=5

http://127.0.0.1:8080/mandelbrot

Generating some load

The previous example was interesting, but an idle webserver has, by de�nition, no
performance issues. We need to generate some load. For this I'm using hey by JBD
(https://github.com/rakyll/hey) .

go get -u github.com/rakyll/hey

Let's start with one request per second.

hey -c 1 -n 1000 -q 1 http://127.0.0.1:8080/mandelbrot

And with that running, in another window collect the trace

% curl -o trace.out http://127.0.0.1:8080/debug/pprof/trace?seconds=5
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 66169 0 66169 0 0 13233 0 --:--:-- 0:00:05 --:--:-- 17390
% go tool trace trace.out
2017/09/17 16:09:30 Parsing trace...
2017/09/17 16:09:30 Serializing trace...
2017/09/17 16:09:30 Splitting trace...
2017/09/17 16:09:30 Opening browser. Trace viewer is listening on http://127.0.0.1:60301

https://github.com/rakyll/hey

Further reading

Rhys Hiltner, Go's execution tracer (https://www.youtube.com/watch?v=mmqDlbWk_XA) (dotGo 2016)

Rhys Hiltner, An Introduction to "go tool trace" (https://www.youtube.com/watch?v=V74JnrGTwKA) (GopherCon 2017)

Dave Cheney, Seven ways to pro�le Go programs (https://www.youtube.com/watch?v=2h_NFBFrciI) (GolangUK
2016)

Dave Cheney, High performance Go workshop (https://dave.cheney.net/training#high-performance-go)

Francesc Campoy, just for func #22: using the Go execution tracer (https://www.youtube.com/watch?

v=ySy3sR1LFCQ)

https://www.youtube.com/watch?v=mmqDlbWk_XA
https://www.youtube.com/watch?v=V74JnrGTwKA
https://www.youtube.com/watch?v=2h_NFBFrciI
https://dave.cheney.net/training#high-performance-go
https://www.youtube.com/watch?v=ySy3sR1LFCQ

Memory management and GC

Memory management and GC

Go is a garbage collected language. This is a design principle, it will not change.

As a garbage collected language, the performance of Go programs is often determined by
their interaction with the garbage collector.

Next to your choice of algorithms, memory consumption is the most important factor that
determines the performance and scalability of your application.

This section discusses the operation of the garbage collector and strategies for lowering
memory usage if garbage collector performance is a bottleneck.

Go GC is focused on reducing latency

The purpose of a garbage collector is to present the illusion that there is an in�nite amount
of memory available to the program.

You may disagree with this statement, but this is the base assumption of how garbage
collector designers think.

The Go GC is designed for low latency servers and interactive applications.

The Go GC favors lower latency over maximum throughput; it moves some of the allocation
cost to the mutator to reduce the cost of cleanup later.

Garbage collector design

The design of the Go GC has changed over the years

Go 1.0, stop the world mark sweep collector based heavily on tcmalloc.

Go 1.3, fully precise collector, wouldn't mistake big numbers on the heap for pointers,
thus leaking memory.

Go 1.5, new GC design, focusing on latency over throughput.

Go 1.6, GC improvements, handling larger heaps with lower latency.

Go 1.7, small GC improvements, mainly refactoring.

Go 1.8–1.9, further work to reduce STW times, now down to the 100 microsecond range.

Go 1.10, ROC collector is an experiment to extend the idea of escape analysis per
goroutine.

Garbage collector monitoring

A simple way to obtain a general idea of how hard the garbage collector is working is to
enable the output of GC logging.

These stats are always collected, but normally suppressed, you can enable their display by
setting the GODEBUG environment variable.

% env GODEBUG=gctrace=1 godoc -http=:8000
gc 1 @0.017s 8%: 0.021+3.2+0.10+0.15+0.86 ms clock, 0.043+3.2+0+2.2/0.002/0.009+1.7 ms cpu, 5->6->1 MB, 4
gc 2 @0.026s 12%: 0.11+4.9+0.12+1.6+0.54 ms clock, 0.23+4.9+0+3.0/0.50/0+1.0 ms cpu, 4->6->3 MB, 6 MB go
gc 3 @0.035s 14%: 0.031+3.3+0.76+0.17+0.28 ms clock, 0.093+3.3+0+2.7/0.012/0+0.84 ms cpu, 4->5->3 MB, 3
gc 4 @0.042s 17%: 0.067+5.1+0.15+0.29+0.95 ms clock, 0.20+5.1+0+3.0/0/0.070+2.8 ms cpu, 4->5->4 MB, 4 MB
gc 5 @0.051s 21%: 0.029+5.6+0.33+0.62+1.5 ms clock, 0.11+5.6+0+3.3/0.006/0.002+6.0 ms cpu, 5->6->4 MB, 5
gc 6 @0.061s 23%: 0.080+7.6+0.17+0.22+0.45 ms clock, 0.32+7.6+0+5.4/0.001/0.11+1.8 ms cpu, 6->6->5 MB, 7
gc 7 @0.071s 25%: 0.59+5.9+0.017+0.15+0.96 ms clock, 2.3+5.9+0+3.8/0.004/0.042+3.8 ms cpu, 6->8->6 MB, 8

The trace output gives a general measure of GC activity.

DEMO: Show godoc with GODEBUG=gctrace=1 enabled

Recommendation: use this env var in production, it has no performance impact.

Garbage collector monitoring (cont.)

Using GODEBUG=gctrace=1 is good when you know there is a problem, but for general
telemetry on your Go application I recommend the net/http/pprof interface.

import _ "net/http/pprof"

Importing the net/http/pprof package will register a handler at /debug/pprof with
various runtime metrics, including:

A list of all the running goroutines, /debug/pprof/heap?debug=1.

A report on the memory allocation statistics, /debug/pprof/heap?debug=1.

Warning: net/http/pprof will register itself with your default http.ServeMux.

Be careful as this will be visible if you use http.ListenAndServe(address, nil).

DEMO: godoc -http=:8080, show /debug/pprof.

Garbage collector tuning

The Go runtime provides one environment variable to tune the GC, GOGC.

The formula for GOGC is as follows.

goal = reachable * (1 + GOGC/100)

For example, if we currently have a 256MB heap, and GOGC=100 (the default), when the heap
�lls up it will grow to

512MB = 256MB * (1 + 100/100)

Values of GOGC greater than 100 causes the heap to grow faster, reducing the pressure
on the GC.

Values of GOGC less than 100 cause the heap to grow slowly, increasing the pressure on
the GC.

The default value of 100 is just a guide. you should choose your own value after pro�ling your
application with production loads.

Reduce allocations

Make sure your APIs allow the caller to reduce the amount of garbage generated.

Consider these two Read methods

func (r *Reader) Read() ([]byte, error)
func (r *Reader) Read(buf []byte) (int, error)

The �rst Read method takes no arguments and returns some data as a []byte. The second
takes a []byte bu�er and returns the amount of bytes read.

The �rst Read method will always allocate a bu�er, putting pressure on the GC. The second
�lls the bu�er it was given.

strings and []bytes

In Go string values are immutable, []byte are mutable.

Most programs prefer to work string, but most IO is done with []byte.

Avoid []byte to string conversions wherever possible, this normally means picking one
representation, either a string or a []byte for a value. Often this will be []byte if you read
the data from the network or disk.

The bytes (https://golang.org/pkg/bytes/) package contains many of the same operations— Split, Compare,
HasPrefix, Trim, etc—as the strings (https://golang.org/pkg/strings/) package.

Under the hood strings uses same assembly primitives as the bytes package.

https://golang.org/pkg/bytes/
https://golang.org/pkg/strings/

Preallocate slices if the length is known

Append is convenient, but wasteful.

Slices grow by doubling up to 1024 elements, then by approximately 25% after that. What is
the capacity of b after we append one more item to it?

If you use the append pattern you could be copying a lot of data and creating a lot of
garbage.

func main() {
 b := make([]int, 1024)
 b = append(b, 99)
 fmt.Println("len:", len(b), "cap:", cap(b))
} Run

Preallocate slices if the length is known (cont.)

If know know the length of the slice beforehand, then pre-allocate the target to avoid copying
and to make sure the target is exactly the right size.

Before:

var s []string
for _, v := range fn() {
 s = append(s, v)
}
return s

After:

vals := fn()
s := make([]string, len(vals))
for i, v := range vals {
 s[i] = v
}
return s

Using sync.Pool

The sync package comes with a sync.Pool type which is used to reuse common objects.

sync.Pool has no �xed size or maximum capacity. You add to it and take from it until a GC
happens, then it is emptied unconditionally.

var pool = sync.Pool{New: func() interface{} { return make([]byte, 4096) }}

func fn() {
 buf := pool.Get().([]byte) // takes from pool or calls New
 // do work
 pool.Put(buf) // returns buf to the pool
}

Warning: sync.Pool is not a cache. It can and will be emptied at any time.

Do not place important items in a sync.Pool, they will be discarded.

Use streaming IO interfaces

Where-ever possible avoid reading data into a []byte and passing it around.

Depending on the request you may end up reading megabytes (or more!) of data into
memory. This places huge pressure on the GC, which will increase the average latency of
your application.

Instead use io.Reader and io.Writer to construct processing pipelines to cap the amount
of memory in use per request.

For e�ciency, consider implementing io.ReaderFrom / io.WriterTo if you use a lot of
io.Copy. These interface are more e�cient and avoid copying memory into a temporary
bu�er.

Conclusion

Conclusion

Start with the simplest possible code.

Measure. Pro�le your code to identify the bottlenecks, do not guess.

If performance is good, stop. You don't need to optimise everything, only the hottest parts of
your code.

As your application grows, or your tra�c pattern evolves, the performance hot spots will
change.

Don't leave complex code that is not performance critical, rewrite it with simpler operations if
the bottleneck moves elsewhere.

Conclusion (cont.)

Always write the simplest code you can, the compiler is optimised for normal code.

Shorter code is faster code; Go is not C++, do not expect the compiler to unravel complicated
abstractions.

Shorter code is smaller code; which is important for the CPU's cache.

Pay very close attention to allocations, avoid unnecessary allocation where possible.

Don't trade performance for reliability

"I can make things very fast if they don't have to be correct."
Russ Cox

"Readable means reliable"
Rob Pike

Performance and reliability are equally important.

I see little value in making a very fast server that panics, deadlocks or OOMs on a regular
basis.

Don't trade performance for reliability

Thank you

Dave Cheney
dave@cheney.net (mailto:dave@cheney.net)

http://dave.cheney.net/ (http://dave.cheney.net/)

@davecheney (http://twitter.com/davecheney)

mailto:dave@cheney.net
http://dave.cheney.net/
http://twitter.com/davecheney

