
Continuous Monitoring with
JDK Flight Recorder

@MikaelVidstedt

Copyright © 2019 Oracle and/or its affiliates.

Director, Java Virtual Machine
Java Platform Group, Oracle

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development,
release, timing, and pricing of any features or functionality described for Oracle’s products may change
and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

Copyright © 2019 Oracle and/or its affiliates.

http://www.oracle.com/investor

Copyright © 2019 Oracle and/or its affiliates.

SLA Breach

No Data
Available

Additional
Logging
Enabled

Performance
Impact

Logging
Disabled

Copyright © 2019 Oracle and/or its affiliates.

Agenda

Overview: What is JDK Flight Recorder (JFR)?
JFR Events
Designed for use in Production
Using JFR
Future Work

Copyright © 2019 Oracle and/or its affiliates.

What is JDK Flight Recorder?

Copyright © 2019 Oracle and/or its affiliates.

JFR In a Nutshell
JFR = JDK Flight Recorder
Available now, in a JDK near you!

An event based tracing framework
Built into the Java Runtime
Extremely low overhead, suitable for production environments
Allows correlation of data from different subsystems/software layers
With APIs for

Producing application level events
Consuming event streams

Copyright © 2019 Oracle and/or its affiliates.

Demo: Simple
Monitoring

History

Copyright © 2019 Oracle and/or its affiliates.

200x

JRockit

History

Copyright © 2019 Oracle and/or its affiliates.

JDK 7u4 - 2012

Initial Hotspot version
(Oracle internal use only)

JDK 9 – 2017

Public APIs for creating
and consuming data

JDK 11 – 2018

Open Sourced!

JFR Events

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event

Event ID
Timestamp (CPU ticks)
Duration (CPU ticks)
Thread ID
StackTrace ID
Event Specific Payload

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event
import jdk.jfr.Event;

class MyEvent extends Event {
}

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event
import jdk.jfr.Event;

class MyEvent extends Event {
}

void doThing() {
// do important stuff here

}

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event
import jdk.jfr.Event;

class MyEvent extends Event {
}

void doThing() {
MyEvent e = new MyEvent();

e.begin();

// do important stuff here

e.end();
e.commit();

}

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event
import jdk.jfr.Event;

class MyEvent extends Event {
}

void doThing() {
MyEvent e = new MyEvent();

e.begin();

// do important stuff here

e.end();
e.commit();

}

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event
import jdk.jfr.Event;

class MyEvent extends Event {
}

void doThing() {
MyEvent e = new MyEvent();

e.begin();

// do important stuff here

e.end();
e.commit();

}

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event
import jdk.jfr.Event;

class MyEvent extends Event {
}

void doThing() {
MyEvent e = new MyEvent();

e.begin();

// do important stuff here

e.end();
e.commit();

}

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event
import jdk.jfr.Event;

class MyEvent extends Event {
}

void doThing() {
MyEvent e = new MyEvent();

e.begin();

// do important stuff here

e.end();
e.commit();

}

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event
import jdk.jfr.Event;

class MyEvent extends Event {
}

void doThing() {
MyEvent e = new MyEvent();

e.begin();

// do important stuff here

e.end();
e.commit(); // implicit end()

}

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event
import jdk.jfr.Event;

class MyEvent extends Event {
}

void doThing() {
MyEvent e = new MyEvent();

e.begin();

// do important stuff here

e.commit();
}

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event
import jdk.jfr.Event;

class MyEvent extends Event {
String message;
int value;

}

void doThing() {
MyEvent e = new MyEvent();

e.message = “Hello”;
e.value = 4711;

e.begin();

// do important stuff here

e.commit();
}

Copyright © 2019 Oracle and/or its affiliates.

The Anatomy of a JFR Event
import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.Name;

@Name(“com.oracle.foo.CoolThing”)
@Label(“Cool Thing”)
class MyEvent extends Event {

@Label(“Message”)
String message;

@Label(“Value”)
int value;

}

void doThing() {
MyEvent e = new MyEvent();

e.message = “Hello”;
e.value = 4711;

e.begin();

// do important stuff here

e.commit();
}

Copyright © 2019 Oracle and/or its affiliates.

JFR Annotations
Annotation Description Default

@Name Set explicit name. Recommended for all event classes.
Recommended format:
[org|com|net].[organization|product].EventName

Full class name, e.g.:
com.coolproj.CoolEvent
com.oracle.internal.bar$MyEvent

@Label Human readable name N/A

@Description More detailed description (~1-2 sentences) N/A

@Category Category to which this event logically belongs N/A

@Threshold Default minimum duration for the event to be included in
the recording

0 ns

@Enabled Controls whether the event should be enabled by default true (enabled)

@StackTrace Controls whether the stack trace should be included in
the event by default

true (enabled/included)

Copyright © 2019 Oracle and/or its affiliates.

Note: List is not exhaustive, see jdk.jfr.* javadoc for more annotations and information

Events Generated by the Java Runtime

~140 event types in Java Runtime (and growing)

Copyright © 2019 Oracle and/or its affiliates.

Examples of events in Java Runtime

Category Event

Environment Command line
JDK Version Information
OS
CPU

Java Execution I/O: File & Network
Thread Sampling

JVM Operations Class Loading
GC
JIT Compiler

Behind the Scenes: Event Data Flow

Copyright © 2019 Oracle and/or its affiliates.

Event

Event
Thread Buffer

JVM Events

Java API Events

Global buffer

Global buffer

Global buffer

When full, is copied into

Disk chunk

When full, is copied into

Repository

Once per second1, or
when full, is copied into

1 with event streaming

The JFR File Format

Compact binary format
Varint 128 LEB encoding (JDK 9+)
Self-describing

Metadata information describing how to interpret events
Data necessary for resolving the preceding events

Copyright © 2019 Oracle and/or its affiliates.

Event Filtering

Events can be filtered by
Type / Name
Duration

Copyright © 2019 Oracle and/or its affiliates.

Event Correlation

Events from multiple levels of the stack in the same stream
Application, Java Runtime libraries, JVM, OS

Enables powerful in-depth analysis
Start on high level, go as deep as needed

Copyright © 2019 Oracle and/or its affiliates.

Designed for Use in Production

Copyright © 2019 Oracle and/or its affiliates.

Designed for Production

Designed from the start for use in production
Extremely low overhead
Piggy-backs on JVM operations
Events generated into thread-local buffers

Default on in Oracle Fusion applications
Several large companies use JFR extensively

Copyright © 2019 Oracle and/or its affiliates.

But what about
performance…?

Copyright © 2019 Oracle and/or its affiliates.

But what about performance…?
void doThing() {

MyEvent e = new MyEvent();

e.begin();

// do important stuff here

e.commit();
}

Copyright © 2019 Oracle and/or its affiliates.

But what about performance…?
// Warning: pseudo-code – this is NOT what commit() actually looks like!!

void Event::commit() {

if (isEnabled()) {

// now() reads CPU clock register

long duration = now() - startTime;

if (duration > THRESHOLD) {

if (shouldCommit()) {

// Cheap - Thread local writes

actuallyCommit();

}

}

}

}
Copyright © 2019 Oracle and/or its affiliates.

But what about performance…?
void doThing() {

MyEvent e = new MyEvent();

e.begin();

// do important stuff here

e.commit();
}

Copyright © 2019 Oracle and/or its affiliates.

But what about performance…?
void doThing() {

MyEvent e = new MyEvent();

e.startTime = now();

// do important stuff here

e.commit();
}

Copyright © 2019 Oracle and/or its affiliates.

But what about performance…?
void doThing() {

MyEvent e = new MyEvent();

e.startTime = <JVM intrinsic>;

// do important stuff here

e.commit();
}

Copyright © 2019 Oracle and/or its affiliates.

But what about performance…?
void doThing() {

MyEvent e = new MyEvent();

e.startTime = <JVM intrinsic>;

// do important stuff here

if (e.isEnabled()) {
// perform additional checks and possibly call actuallyCommit()

}
}

Copyright © 2019 Oracle and/or its affiliates.

But what about performance…?
void doThing() {

MyEvent e = new MyEvent();

e.startTime = <JVM intrinsic>;

// do important stuff here

if (false) {
// perform additional checks and possibly call actuallyCommit()

}
}

Copyright © 2019 Oracle and/or its affiliates.

But what about performance…?
void doThing() {

MyEvent e = new MyEvent();

e.startTime = <JVM intrinsic>;

// do important stuff here

}

Copyright © 2019 Oracle and/or its affiliates.

But what about performance…?
void doThing() {

MyEvent e = new MyEvent();

long startTime = <JVM intrinsic>;

// do important stuff here

}

Copyright © 2019 Oracle and/or its affiliates.

But what about performance…?
void doThing() {

long startTime = <JVM intrinsic>;

// do important stuff here

}

Copyright © 2019 Oracle and/or its affiliates.

But what about performance…?
void doThing() {

// do important stuff here
}

Copyright © 2019 Oracle and/or its affiliates.

Performance (YMMV)

Copyright © 2019 Oracle and/or its affiliates.

Logging Cost (ns/operation, lower is better)
ns

/o
pe

ra
tio

n

0

50000

100000

150000

200000

JFR Disabled JFR

Enabled

(stackdepth=1)

log4j

OFF

log4j

INFO

j.u.logging

OFF

j.u.logging

INFO

Redirected

System.out

1,800

154,000

41,4000

Performance (YMMV)

Copyright © 2019 Oracle and/or its affiliates.

Logging Cost (ns/operation, lower is better)
ns

/o
pe

ra
tio

n

0

30,000,000

60,000,000

90,000,000

120,000,000

JFR Disabled JFR

Enabled

(stackdepth=1)

log4j

OFF

log4j

INFO

j.u.logging

OFF

j.u.logging

INFO

Redirected

System.out

120,000,000

43,000,000

1,800154,00041,4000

Performance Considerations

Default configuration designed to have less than 1% overhead
Other configurations can have more overhead

Stack depth (default: 64)
Deep call stacks can impact performance

Copyright © 2019 Oracle and/or its affiliates.

Using JFR

Copyright © 2019 Oracle and/or its affiliates.

Using JFR (JDK 11+)
Start a recording
java -XX:StartFlightRecording ...

Start a recording, and store it to file
java –XX:StartFlightRecording:filename=/tmp/foo.jfr ...

Enable recording in an already running VM (pid 4711)
jcmd <pid | main class name> JFR.start [options]
jcmd 4711 JFR.start OR jcmd MyApplication JFR.start

Dump a recording from running VM (pid 4711), at most 50MB of data
jcmd 4711 JFR.dump maxsize=50MB

Copyright © 2019 Oracle and/or its affiliates.

Demo: Looking at JFR
recordings

Using bin/jfr
Print summary of recording
jfr summary myrecording.jfr

Print events
jfr print myrecording.jfr

Print events in JSON format
jfr print --json myrecording.jfr

Print GC related events
jfr print --categories "GC" myrecording.jfr

Copyright © 2019 Oracle and/or its affiliates.

JFR: Use Cases
Production

Troubleshooting / Root-cause analysis

Development
Optimizing hot methods
Allocation profiling

Testing
Regression testing/monitoring execution profile changes

Allocation, Lock Contention, …

Copyright © 2019 Oracle and/or its affiliates.

Future Work

Copyright © 2019 Oracle and/or its affiliates.

Future Work

Copyright © 2019 Oracle and/or its affiliates.

Consuming Events Today
To access JFR data a recording must be

1. Started
2. Stopped
3. Dumped to a separate file

Reasonable for profiling
Not friendly to monitoring/continuous consumption

Copying data out from disk repository creates overhead
Recordings have same (redundant) information

Copyright © 2019 Oracle and/or its affiliates.

Enter: JFR Event Streaming (JEP 349)

Goal: Make it trivial to consume and act on events continuously

API to read data directly from the disk repository
Even when recordings are in progress
Data flushed to repository continuously

Default: once a second

Copyright © 2019 Oracle and/or its affiliates.

Simple Event Stream Consumer
try (var rs = new RecordingStream()) {

rs.enable("jdk.JavaMonitorEnter").withThreshold(Duration.ofMillis(10));
rs.onEvent("jdk.JavaMonitorEnter", event -> {

System.out.println(event.getClass("monitorClass"));
});

rs.start();
}

Copyright © 2019 Oracle and/or its affiliates.

Simple Event Stream Consumer
try (var rs = new RecordingStream()) {

rs.enable("jdk.JavaMonitorEnter").withThreshold(Duration.ofMillis(10));
rs.onEvent("jdk.JavaMonitorEnter", event -> {

System.out.println(event.getClass("monitorClass"));
});

rs.start();
}

Copyright © 2019 Oracle and/or its affiliates.

Simple Event Stream Consumer
try (var rs = new RecordingStream()) {

rs.enable("jdk.JavaMonitorEnter").withThreshold(Duration.ofMillis(10));
rs.onEvent("jdk.JavaMonitorEnter", event -> {

System.out.println(event.getClass("monitorClass"));
});

rs.start();
}

Copyright © 2019 Oracle and/or its affiliates.

Simple Event Stream Consumer
try (var rs = new RecordingStream()) {

rs.enable("jdk.JavaMonitorEnter").withThreshold(Duration.ofMillis(10));
rs.onEvent("jdk.JavaMonitorEnter", event -> {

System.out.println(event.getClass("monitorClass"));
});

rs.start();
}

Copyright © 2019 Oracle and/or its affiliates.

Simple Event Stream Consumer
try (var rs = new RecordingStream()) {

rs.enable("jdk.JavaMonitorEnter").withThreshold(Duration.ofMillis(10));
rs.onEvent("jdk.JavaMonitorEnter", event -> {

System.out.println(event.getClass("monitorClass"));
});

rs.start(); // “Blocking” call, will process events until stream ends/is closed
}

Copyright © 2019 Oracle and/or its affiliates.

Simple Event Stream Consumer
try (var rs = new RecordingStream()) {

rs.enable("jdk.JavaMonitorEnter").withThreshold(Duration.ofMillis(10));
rs.onEvent("jdk.JavaMonitorEnter", event -> {

System.out.println(event.getClass("monitorClass"));
});
rs.enable("jdk.CPULoad").withPeriod(Duration.ofSeconds(1));
rs.onEvent("jdk.CPULoad", event -> {

System.out.println(event.getFloat("machineTotal"));
});

rs.start();
}

Copyright © 2019 Oracle and/or its affiliates.

Demo: Continuous
Monitoring

Other

Access event stream over JMX
Additional JDK events
OpenJDK Project “Loom”: Fibers Support
Improve command line configuration
Event throttling – Record every n:th event
Deep tracing – Record Everything for a short period

Copyright © 2019 Oracle and/or its affiliates.

JFR Integration Opportunities

Development
IntelliJ, VisualVM, …

Monitoring
APM, …

Frameworks
Kafka, RxJava, Open Tracing, …

Copyright © 2019 Oracle and/or its affiliates.

Life on the (not so) Bleeding Edge

Please help us by trying out the new features!

JDK 14 Early-Access builds: http://jdk.java.net/14/
Feedback: hotspot-jfr-dev@openjdk.java.net

Copyright © 2019 Oracle and/or its affiliates.

TO PROVIDE
FEEDBACK!

http://jdk.java.net/14/
http://openjdk.java.net

Summary
JFR = JDK Flight Recorder
Available now, in a JDK near you!

An event based tracing framework
Built into the Java Runtime
Extremely low overhead, suitable for production environments
Allows correlation of data from different subsystems/software layers
With APIs for

Producing application level events
Consuming event streams

Copyright © 2019 Oracle and/or its affiliates.

Thank You!

Questions?

@MikaelVidstedt

Director, Java Virtual Machine
Java Platform Group, Oracle

