atterns f
treaming - pplications

Monal Daxini

11/6 /2018 @ monaldax NETFLIX

Profile

4+ years building stream processing platform at Netflix
Drove technical vision, roadmap, led implementation

17+ years building distributed systems

@monaldax

Structure Of The Talk

Stream

Processing ? Set The Stage 8 Patterns

N

5 Functional 3 Non-Functional

@monaldax

@monaldax

Disclaimer

Inspired by True Events encountered building and operating a
Stream Processing platform, and use cases that are in
production or in ideation phase in the cloud.

Some code and identifying details have been changed, artistic

liberties have been taken, to protect the privacy of streaming
applications, and for sharing the know-how. Some use cases

may have been simplified.

Stream Processing?
Processing Data-In-Motion

@monaldax

NETFLIX ORIGINAL

STRANGER THINGS

95% Match 2016 1Season |[4KUltraHD| |5.1

When a young boy vanishes, a small town uncovers
amystery involving secret experiments, terrifying
supernatural forces and one strange little girl.

Winona Ryder, David Harbour, Matthew Modine
TV Shows, TV Sci-Fi & Fantasy, Teen TV Shows

Popular on Netflix

NETFLIX

Recently Watched

NETFLIX
Housess @

£ 5 of CARD "ROWN

o
-
N
~—

Lower Latency Analytics

Trending Now

T RET, "
RITUAL

"o DIRTY MONEY &

NEW EPISODE WEEKLY

Golden Globe Award- wmnlng TV Shows » o
v y ‘) ." > \"'e., . i
ENP 5 e X/ Aj'
% N 4 & AMERICAN
\- 'v! v 'y ~
e 4 (l jToRY aw & Order: Special Victims Unit
_5 ; / /] 90% Match 2015 TV-14 | 3 Seasons
) 7 Welcome to the Special Victims Unit. Where the créme
de la créme rain justice on the scum of the earth.

TV Shows

HITLER'S BATES

tt ; 9’:"@"* MOTEL - s

e pfof?

Feb 26

Feb ¢5

User Activity Stream - Batched

@monaldax

Sessions - Batched User Activity Stream

@monaldax

Flash

Jessica !

Luke

Correct Session - Batched User Activity Stream

@monaldax

Flash

Jessica

Luke

Stream Processing Natural For User Activity Stream Sessions

Flash @
Jessica @ [‘ @] @

N\
Luke @

@monaldax

Why Stream Processing?

1. Low latency insights and analytics
2. Process unbounded data sets
3. ETL as data arrives

4. Ad-hoc analytics and Event driven applications

@monaldax

Set The Stage
Architecture & Flink

Stream Processing App Architecture Blueprint

| IR Stream A,I f \
[Source) Processing Job sink

@monaldax

Stream Processing App Architecture Blueprint

— |
L

Source > stredm _— Sinks

%,/ Processing Job \

@monaldax

2, Why Flink?

Flink Programs Are Streaming Dataflows - Streams And
Transformation Operators

DataStream<String> lines = env.addSource (
, Source
new FlinkKafkaConsumer<>(..));

DataStream<Event> events = lines.map((line) -> parse(line)); :}- Transformation
DataStream<Statistics> stats = events

.keyBy ("id")

.timeWindow (Time.seconds (10))

.apply (new MyWindowAggregationFunction());

— Transformation

—

stats.addSink (new RollingSink (path)); } Sink

@monaldax Image adapted, source: Flink Docs

Streams And Transformation Operators - Windowing

10 Second Time windows
Event
A A A A A /
{ A4 \ A\Y4 Y4 \
| N N\ J\ / \Event stream
Y Y Y Y

@monaldax Image source: Flink Docs

Streaming Dataflow DAG

¥

Source Transformation Sink
Operator Operators Operator
4 / \ \
keyBy()/
Source map() window()/ Sink
apply()

Stream

|

Streaming Dataflow

@monaldax Image adapted, source: Flink Docs

Stalable Automatic Scheduling Of Operations

Job Manager

(Process)
Parallelism 2
Sink 1
TaskManager (Process) TaskManager (Process)
Task Slot Task Slot Task Slot Task Slot Task Slot Task Slot
' keyBy()/ keyBy()/
I window()/ i Sink i window()/ i
i apply() i P[] | i apply()
R S
f.- / ¢ ‘-.f
\ / / : 1
Threads Threads

@monaldax Image adapted, source: Flink Docs

Flexible Deployment

Bare Metal VM / Cloud Containers

o © #

@monaldax

Stateless Stream Processing
No state maintained across events

\
Application

il — 1

N J

~ 1

@monaldax Image adapted from: Stephan Ewen

Fault-tolerant Processing - Stateful Processing

) In-Memory / On-Disk
.~ Local State Access

\ Streaming Application

¢ Sink

Source /

Producers Savepoints Checkpoints
(Explicitly Triggered) (Periodic, Asynchronous,
Incremental Checkpoint)

@monaldax

Levels Of APl Abstraction In Flink

Stateful Stream Processing

High-level Language

Declarative DSL

Core APIs

Low-level building block
(streams, state, [event] time)

Source: Flink Documentation

Describing Patterns

@monaldax

Describing Design Patterns

o Use (ase / Motivation

o Pattern

o (ode Snippet & Deployment mechanism
o Related Pattern, if any

@monaldax

Patterns
Functional

1. Configurable Router

@monaldax

NETFLIX ORIGINAL

STRANGER THINGS

95% Match 2016 1Season |[4KUltraHD| |5.1

When a young boy vanishes, a small town uncovers
amystery involving secret experiments, terrifying
supernatural forces and one strange little girl.

Winona Ryder, David Harbour, Matthew Modine
TV Shows, TV Sci-Fi & Fantasy, Teen TV Shows

Popular on Netflix

NETFLIX

Recently Watched

NETFLIX L i O (B .
VAR . ANCI
- HousEs (RERVERE: PR vl e -
{ of CARDS - i "9 JJCROWN =

N

Service Traffic Map / us-east-1 200 services / 116 filtered (show) | Locate Service Q | Filters~ Display~

)\

000000

1.1 Use Case / Motivation - Ingest Pipelines

 (reate ingest pipelines for different event streams declaratively

* Route events to data warehouse, data stores for analytics ng §r3

e With at-least-once semantics

e Streaming ETL - Allow declarative filtering and projection

@monaldax

1.1 Keystone Pipeline - A Self-serve Product

+ SERVERLESS

<eySt@ne . Turnkey - ready to use

. 100% inthe cloud
. No code, Managed Code & Operations

PIPELINE

@monaldax

1.1 Ul To Provision 1 Data Stream, A Filter, & 3 Sinks

Stream Name Owner Description
L "a"a """ a2 @netflix.com aataatated Logging

P R O D . e u _West- l + Output + Filter + Projection

|

1 .
Elasticsearch |
! O O

Producers. .. () Keystone' = = = = = — = -
-—r
- T T T === %
| K2
1 O coenuneteel |

8b

1.1 Optional Filter & Projection (Out of the box)

cle
O K2 Kafka (1036)
cle (k2-1 2)

Attach new Outputs to this Filter/Projection using the "Stream Actions" menu, or drag-and-drop existing Outputs onto this node.
Refer to the XPathFilter syntax reference for help defining your Filter expression.

ﬁlter: Include only events that match this XPath expression \

Filter XPath Expression
xpath("source") = "edx"|

Projection: Include/Exclude specific fields from each event

Projection Behavior Fields to include/exclude

O Include only selected fields Enter a comma-separated list of top-level Fields to include/exclude from the message

\() Exclude selected fields /

1.1 Provision 1 Kafka Topic, 3 Configurable Router Jobs

®

Configurable Router Job %
-
Fan-out: 3 [Filter][Projection][Connector] IVE
1 | | Configurable Router Job
@—» 2]3lalslel7 > > mo
[Filter][Projection][Connector] -
Events §gplay events Elasticsearch
Configurable Router Job
>§g
[Filter][Projection][Connector]

Consumer Kafka

@monaldax

1.1 Keystone Pipeline Scale

o Upto I trillion new events / day

o Peak: 1ZMevents /sec, 36 GB /sec
o ~4 PB of data transported / day

« ~¢000 Router Jobhs /10,000 containers

@monaldax

1.1 Pattern: Configurable Isolated Router

Configurable Router Job
@ -$e— , \ | Sink
[[Declarative Processors]
Events
Producer

@monaldax

1.1 Code Snippet: Configurable [solated Router

val kafkaSource = getSourceBuilder.fromKafka("topicl").build()
val selectedSink = getSinkBuilder()
.toSelector(sinkName).declareWith("kafkasink", kafkaSink)

.or("s3sink", s3Sink).or("essink", esSink).or("nullsink", nullSink).build();

kafkaSource
filter(KeystoneFilterFunction).map(KeystoneProjectionFunction)

.addSink(selectedSink)

@monaldax

No User Code

|

1.2 Use Case / Motivation - Ingest large streams with high fan-out Efficiently

 Popular stream / topic has high fan-out factor

* Requires large Kafka Clusters, expensive

Filter

E §g TopicA Clusterl
Events Kafka ‘
Producer TopicB Clusterl

§

@monaldax

1.2 Pattern: Configurable Co-Isolated Router

Filter

TopicA Clusterl
88 82
Events Kafka ‘
Producer f Projection TopicB Clusterl

5

Co-Isolated Router

Merge Routing To Same Kafka Cluster

@monaldax

1.2 Code Snippet: Configurable Co-Isolated Router

ui_A Clicks_KakfaSource ui_A_Clicks_KafkaSource
filter(filter) .map(transformer)
.map(projection) flatMap(outputFlatMap)
.map(outputConverter) .map(outputConverter)

.addSink(kafkaSinkA_Topicl) .addSink(kafkaSinkA_Topic2)

@monaldax

No User Code

f

2. Script UDF* Component
[Static / Dynamic]

“UDF - User Defined Function

@monaldax

¢. Use (ase / Motivation - Configurable Business Logic Code
for operations like transformations and filtering

Managed Router / Streaming Job

Logic
ox
-

-

@monaldax

2. Pattern: Static or Dynamic Script UDF (stateless) Component
Comes with all the Pros and Cons of scripting engine

e ————
- -

- -

— S~

- Scnpt Engine executes \
-, function defined in the Ul

Streaming Joh ________________

@monaldax

2. Code Snippet: Script UDF Component

Contents configurable at runtime

val xscript = /

new DynamicConfig("x.script")

kakfaSource
.map(new ScriptFunction(xscript))
filter(new ScriptFunction(xsricpt2))
.addSink(new NoopSink())

@monaldax

// Script Function

val sm = new ScriptEngineManager()

ScriptEngine se =
m.getEngineByName ("nashorn");
se .eval(script)

3. The Enricher

aaaaaaaaa

Next 3 Patterns (3-5) Require Explicit Deployment

Applications » @ personalization_streaming = » > personalization_streaming @i i CONFIG DEPLOYMENTS
&
Owner Deployment Image Main Class Entrypoint Deployment Type
| e spaas-personalization-streaming, i ~ com.netflix.dea.paa.streaming.& =i Minimize Duplicates -

PROD US-EAST-1

Image Version . .
2.4.0-final - Links v Job Actions v

X

Metrics Dashboard

Job O pssisink
dssisource O O
O pssisinkkafk

Job Flink Ul

Job Logs
iif Spinnaker ASG

Job

P rti
* e Specify the number of resources required to run this job.

i88 Resources
Containers CPU Network (Mbps) Memory (MB)

. 25 X 8 1000 27000
ﬁ Security Groups

@monaldax

3. User Case - Generating Play Events For
Personalization And Show Discovery

Home TV Shows Movies Recently Added My List

Acclaimed Writers

r . . i '’ — e
y ra ‘ 2
. ‘s ol ‘&% AN -
ST ey
" Ve ——MENU '
el NN gUC E NS ~) 7 AMAZINGINTERIORS ~

Critically-acclaimed TV Shows

FeeDPHIL

m

NETFLIX

THE WORLD'S MOST
EXTRAORDINARY
2 HOMES. I~

- |

3. Use-case: Create play events with current data from services, and lookup
table for analytics. Using lookup table keeps originating events lightweight

Streaming Job

Play Logs §<e St@ne 2 Resource —_—) ﬂ
—> Ney Rate Limiter ~HIVE
. Periodically updating
Service call lookup data
Playback Video
History Service Metadata

@monaldax

3. Pattern: The Enricher

- Rate limit with source or service rate limiter, or with resources
- Pull or push data, Sync / async

) Streaming Job
[Source] > £ Source / Senvice | Sink
Rate Limiter

- Service call
- Lookup from Data Store
- Static or Periodically updated lookup data

| Side Input

@monaldax

3. Code Snippet: The Enricher

val kafkaSource = getSourceBuilder.fromKafka("topicl").build()
val parsedMessages = kafkaSource.flatMap(parser).name(”parser")

val enrichedSessions = parsedMessages.filter(reflushFilter).name("filter")
.map(playbackEnrichment).name(”service"

.map(dataLookup)

enrichmentSessions.addSink(sink).name("sink")

@monaldax

4. The Co-process Joiner

@monaldax

4. Use (ase - Play-Impressions Conversion Rate

Home TV Shows Movies Recently Added My List Q DVD g

Acclaimed Writers

—.‘f”&_

LNl WP
@L@W: nee g
o e o
g e x

NETFLIX BREea

THE WORLD’S MOST
EXTRAORDINARY
- OME P d \

| AM A KILLER

REPERTOIRE ‘o=

- \ .) |

FeEDPHIL

4. Impressions And Plays Scale

130+ M members
10+ B Impressions / day
2.5+ B Play Events / day

~ ¢ TB Processing State

@monaldax

4. Join Large Streams With Delayed, Out Of Order Events Based on

Event Time
. # Impressions per user play
- Impression attributes leading to the play

|mpres5|0ns
—
m/ Streaming Joh

§§8 Kafka Topics

@monaldax

Understanding Event Time

Input
Processing
Time
oooooao : oooooao oooooo
Output oooooao L oooooao oooooo
oooooo oooooo oooooao
A A A A A A

Event Time 10:?0 11}:00 12:00 13:00 14:00 15:00

1 hour Window

Image Adapted from The Apache Beam Presentation Material

4. Use (Case: Join Impressions And Plays Stream On Event Time

im0

P2 X

Kafka Topics

@monaldax

> keyBy

Keyed State

» keyBy

nO
—(7)—

~—~———

—— -

Merge 2 P2 |
__gEmit

=

Co-process

Streaming Job

ST
> Q %
SHIVE

4. Pattern: The Co-process Joiner

Process and Coalesce events for each stream grouped by same key
Join if there is a match, evict when joined or timed out

Keyed State

Source 1 keyBy —’® > State]
— S <
— — Sink
Source ¢ keyBy —’@ > State?

Co-process

!

Streaming Job

@monaldax

4. Code Snippet - The Co-process Joiner, Setup sources

env.setStreamTimeCharacteristic(EventTime)

val impressionSource = kafkaSrcl
filter(eventTypeFilter)

flatMap(impressionParser)
keyBy(in => (s"S{profile_id} S{title_id}"))

val impressionSource = kafkaSrc2
flatMap(playbackParser)
keyBy(in => (s"S{profile_id} S{title_id}"))

@monaldax

4. Code Snippet - The Co-process Joiner, Setup sources

env.setStreamTimeCharacteristic(EventTime)

val impressionSource = kafkaSrc1.filter(eventTypeFilter)
flatMap(impressionParser)

.assignTimestampsAndWatermarks(
new BoundedOutOfOrdernessTimestampExtractor(Time.seconds(10)) {...})

keyBy(in => (s"S${profile_id}_S{title_id}"))

val impressionSource = kafkaSrc2.flatMap(playbackParser)
.assignTimestampsAndWatermarks(
new BoundedOutOfOrdernessTimestampExtractor(Time.seconds(10)) {...})
keyBy(in => (s"S{profile_id}_S{title_id}"))

4. Code Snippet - The Co-process Joiner, Connect Streams

// Connect
impressionSource.connect(playSessionSource)
.process(new CoprocessimpressionsPlays())

.addSink(kafkaSink)

@monaldax

4. Code Snippet - The Co-process Joiner, Co-process Function

@monaldax

class Coprocessloin extends CoProcessFunction {
override def processElementl(value, context, collector) {

... // update and reduce state, join with stream 2, set timer

}

override def processElement2(value, context, collector) {
... // update and reduce state, join with stream 2, set timer

}

override def onTimer(timestamp, context, collector) {
... // clear up state based on event time

9. Event-Sourced Materialized View

[Event Driven Application]

@monaldax

5. Use-case: Publish movie assets CDN location to Cache, to steer
clients to the closest location for playback

(
' Materialized View

N o]

Generates Events to

Service >§‘.g > Streaming Job ,{:"' publish all assets

assetl OCAL (A7 \ “ Sourcel
j

asset? 0CAL, CA

Playhack Assets Ev(ache
" Service assetl OCAL, (A2
asset OCAL (A3

asset_1 added asset_8 deleted

OCAA1 OCAN
Open Connect
Appliances (CDN)

Upload asset_1 Delete asset_8

@monaldax

5. Use-case: Publish movie assets CDN location to Cache, to steer
clients to the closest location for playback

@monaldax

Optional Trigger
to flush view

\ 4

{_
1
1

Event Publisher

Streaming Job

‘ Materialized View |

3. Code Snippet - Setting up Sources

val fullPublishSource = env .addSource(new FullPublishSourceFunction(),
TypelnfoParser.parse("Tuple3<String, Integer, com.netflix. AMUpdate>"))
.setParallelism(1);

val kafkaSource = getSourceBuilder().fromKafka("am_source"

@monaldax

3. Code Snippet - Union Source & Processing

val kafkaSource

flatMap(new FlatmapFunction())) //split by movie
.assignTimestampsAndWatermarks(new AssignerWithPunctuatedWatermarks...]())
.union(fullPublishSource) // union with full publish source

.keyBy(0, 1) // (cdn stack, movie)

.process(new UpdateFunction())) // update in-memory state, output at intervals.
.keyBy(0, 1) // (cdn stack, movie)

.process(new PublishToEvCacheFunction())); // publish to evcache

@monaldax

Patterns
Non-Functional

b. Elastic Dev Interface

@monaldax

b Elastic Dev Interface
Spectrum Of Ease, Capability, & Flexibility

Ease of Use

Point & Click, with UDFs
SOL with UDFs

Annotation based AP| with code generation

Code with reusable components

* (e.g. Data Hygiene, Script Transformer)

o

Ajigede)

/. Stream Processing Platform

@monaldax

/. Stream Processing Platform (SpaaS - Stream Processing Service as a Service)

Dashhoards

@monaldax

Metrics & Monitoring

Routers

Streaming Jobs
“<eySt€’ne (Streaming Joh) : J
g, Reusable Components

s Source & Sink Connectors, Filtering, Projection, etc.

=

Stream Processing Platform
(Streaming Engine, Config Management)

Container Runtime

Amazon EC2

Management Service & Ul

Streaming Job Development

8. Rewind & Restatement

@monaldax

8. Use Case - Restate Results Due To Outage Or Bug In Business Logic

ppl|cat|

A
IIIIII 1

state

outage Now
Time
Checkpoint Y Checkpoint X Checkpoint X+1

@monaldax

8. Pattern: Rewind And Restatement
Rewind the source and state to a know good state

4 Application h

1 ——>IC—+ 1

_ state J,

-
-

-

outage N)
9 ow Time

Checkpoint Y Checkpoint X Checkpoint X+1

@monaldax

Summary

@monaldax

Patterns Summary

FUNCTIONAL NON-FUNCTIONAL
1. Configurable Router 6. Elastic Dev Interface
2. Stript UDF Component 7. Stream Processing Platform
5. The Enricher 8. Rewind & Restatement

4. The Co-process Joiner
5. Event-Sourced Materialized View

@monaldax

Thank you

If you would like to discuss more

@monaldax
in linkedin.com/in/monaldax

NETFLIX

Additional Stream Processing Material

Flink at Netflix, Paypal speaker series, 2018~ http://bit.ly/monal-paypal

Unbounded Data Processing Systems, Strangeloop, 2016 - http://bit.ly/monal-sloop

AWS Re-Invent 2017 Netflix Keystone SPaaS, 2017 - http://bit.ly/monal-relnvent

Keynote - Stream Processing with Flink, 2017 - http://bit.ly/monal-ff201/

Dataflow Paper - http://bit.ly/dataflow-paper

@monaldax

http://bit.ly/monal-paypal
http://bit.ly/monal-sloop
http://bit.ly/monal-reInvent
http://bit.ly/monal-ff2017
http://bit.ly/monal-ff2017

