Netflix Titus, its Feisty
Team, and Daemons

DISENCHANTMENT' S

Titus - Netflix's Container Management Platform

Scheduling

e Service & batch job lifecycle

e Resource management N

Job and Fleet Management

Container Execution

e AWS Integration
e Netflix Ecosystem Support

Stats

3 Million|/

Week High Churn

Containers Launched Batch runtimes
Per Week (<1s,<1m, < 1h, < 12h, < 1d, > 1d)

Autoscaling

Batch vs. Service runtimes
(< 1 day, < 1 week, < 1 month, > 1 month)

The Titus team

Design

Develop
Operate
Support

O — !
B DISENCHENTMERT - DISencHANTMENT

4 ""w

* And Netflix Platform Engineering and Amazon Web Services

Titus Product Strategy

Ordered priority focus on
e Developer Velocity
e Reliabllity

e (Cost Efficiency

Easy migration from VMs to containers
Easy container integration with VMs and Amazon Services
Focus on just what Netflix needs

Deeply integrated AWS container platform

IP per container
e VPC, ENIs, and security groups

IAM Roles and Metadata Endpoint per container aWS

e Container view of 169.254.169.254
Cryptographic identity per container

e Using Amazon instance identity document, Amazon KMS

Service job container autoscaling
e Using Native AWS Cloudwatch, SQS, Autoscaling policies and engine

Application Load Balancing (ALB)

Applications using containers at Netflix

Netflix API, Node.js Backend Ul Scripts Ct;zt;r:;r
Machine Learning (GPUs) for personalization Broduction PjRiges

Services
4Q 16

Encoding and Content use cases
Netflix Studio use cases

CDN tracking, planning, monitoring gitﬁg

Massively parallel Cl system JBasic
Data Pipeline and Stream Processing 1Q.16
Big Data use cases (Notebooks, Presto)

Q4 2018 Container Usage

Jobs Launched

255K jobs / day

Different applications

1K+ different images

Isolated Titus deployments

Single App Cluster Size

7

5K (real), 12K containers (benchmark)

Hosts managed

Containers launched

7K VMs (435,000 CPUs)

450K / day (750K / day peak)

Hosts managed (autoscaled)

55K / month

High Level Titus Architecture

Cassandra <& Docker Registry

Titus Hosts

Titus Control Plane
User Containers
e API
e Scheduling

e Job Lifecycle Control

)A

Spinnaker

Service
Cl/CD

Docker
docker

9

J Mesos agent

Batch/Workflow Titus System Services
Systems

EC2 Autoscaling EC2 AWS Virtual Machines

Open Source

NETFLIX

0SS

Open sourced April 2018
Help other communities by sharing our approach

Lessons Learned

End to End
User Experience

Our initial view of containers

Image Run
Registry Container
Publish Workload

Monitor
Deploy new Containers
Container

Workload

“The Runtime”

What about?

Ad hoc
Performance Run
analysis Container
Workload

Image Change
Registry Campaigns
Publish

Monitor
Containers
Deploy new Security
Container Scanning

Workload

What about?

Local Development Cl/CD Runtime

End to end tooling

Container orchestration only part of the problem

For Netflix ... /%/c \ir‘e
e |ocal Development - Newt |
e Continuous Integration - Jenkins + Newt =

e Continuous Delivery - Spinnaker Y @
e Change Campaigns - Astrid el
e Performance Analysis - Vector and Flamegraphs

Tooling guidance

e Ensure coverage for entire application SDLC

o Developing an application before deployment
o Change management, security and compliance tooling for runtime

e \What we added to Docker tooling

o Curated known base images

o Consistent image tagging

o Assistance for multi-region/account registries
o Consistency with existing tools

Operations and
High Availability

Learning how things fail

Single container crashes

Single host crashes

Control plane fails

Control plane gets into bad state

Learning how things fail

e 3Single container crashes
e 3Single host crashes
o Taking down multiple containers
e Control plane fails
e Control plane gets into bad state

Learning how things fail

e 3Single container crashes
e 3Single host crashes

e Control plane fails

o Existing containers continue to run
o New jobs cannot be submitted
o Replacements and scale ups do not occur

e Control plane gets into bad state

Learning how things fail

e 3Single container crashes
e 3Single host crashes
e Control plane fails

e Control plane gets into bad state
o Can be catastrophic

Case 1 - Single container crashes

e Most orchestrators will recover
Titus Status Cells Aggregated
e Most often during startup I
or shutdown e PROD US-EAST-1

5m 15m 30m 1H 1D 1W 1M

Availability

oo I A E

e Monitor for crash loops

TEST US-EAST-1

5m 15m 30m 1H 1D 1W 1M

o, [A EE
T
o HEEE

Case 2 - Single host crashes

e Need a placement engine that spreads critical workloads

e Need a way to detect and remediate bad hosts

Monitor Node Health

Node problem detector is a DaemonSet monitoring the node health. It collects node problems from various

daemons and reports them to the apiserver as NodeCondition and Event.
It supports some known kernel issue detection now, and will detect more and more node problems over time.

Currently Kubernetes won't take any action on the node conditions and events generated by node problem

detector. In the future, a remedy system could be introduced to deal with node problems.

Titus node health monitoring, scheduling

e Extensive health checks

o Control plane components - Docker, Mesos, Titus executor
o AWS - ENI, VPC, GPU
o Netflix Dependencies - systemd state, security systems

Health Check and
r Service Discovery

Tltus hosts

Titus node health remediation

4 .
: perform analysis on host
Titus hosts perform remediation on host
Y .
Infrastructure if (unrecoverable) {
Automation tell scheduler to reschedule work
(Winston) terminate instance
}

e Rate limiting through centralized service is critical

Spotting fleet wide issues using logging

e For the hosts, not the containers

o Need fleet wide view of container runtime, OS problems
o New workloads will trigger new host problems

e Titus hosts generate 2B log lines per day
o Stream processing to look for patterns and remediations

e Aggregated logging - see patterns in the large

Case 3 - Control plane hard failures

") Titus Status ~ Cells Aggregated
There is at least 1 task that been in the queue for too long

(as of 2018-11-03 13:33) (PNG | Ul)

L rrr.f Legend FEDERATED VIEW

o PROD US-EAST-1
Availability

W >0 % 15m 30m 1H

(99.8,99.9) %

. <99.8 %
Crashes

1 1
13:00 13:10 13:20 13:30

At Crashes Latency
ctua
Max : 20.000 - <0.15%

Avg : 3.483
Tot 209.000 (0.15, 0.45) %

I Threshold . >0.45 % TEST US'EAST‘1

Max : 1.000

Avg : 1.000 5m 15m 30m 1H 1D

Tot 60.000

. - W 1M
i o ; Latency p99 gialeliy,
e Ll = | 11111
el el (60, 180) sec.
Tot 6.000 [l > 180 sec. Latency
White box - monitor time Black box - submit

bucketed queue length synthetic workloads

Case 4 - Control plane soft failures

| don’t feel so good!

But first, let’s talk about Zombies

Disconnected containers

e Early on, we had cases where

o Some but not all of the control plane was working
o User terminated their containers
o Containers still running, but shouldn’t have been

e The “fix” - Mesos implicit reconciliation

o Titus to Mesos - What containers are running?
o Titus to Mesos - Kill these containers we know shouldn’t be running
o System converges on consistent state &x

But what if?

. Scheduler Backing store
gets corrupted

® Controller Or

Control plane reads
store incorrectly

Bad things occur

(22 Winston’s Mom (W) g
. . @Mr_Woofy S =
Runmng Not rur_mmg When the grandbaby wants to watch Moana
Containers Containers and @Netflix is down

12,000 containers “reconciled” in < 1m

An hour to restore service ‘“’“Q

(S

Guidance

e Know how to operate your cluster storage

o Perform backups and test restores
o Test corruption
o Know failure modes, and know how to recover

Recommended etcd minimum
versions: 3.1.11+, 3.2.10+, 3.3.0+

Announcements

Operating etcd clusters for Kubernetes

etcd is a consistent and highly-available key value store used as Kubernetes' backing store for all cluster data

Always have a backup plan for etcd's data for your Kubernetes cluster. For in-depth information on etcd, see etcd documentation. philips
Before you begin

Prerequisites

Resource requirements
Starting Kubernetes API server
Securing etcd clusters
Replacing a failed etcd member
Backing up an etcd cluster

Fwd'd from etcd-dev 54 via Joe Betz
If you run etcd in production, please read!

A couple recent issue report on github for both etcd and Kubernetes
github have highlighted the fact that some older versions of etcd

Scaling up etcd clusters contain defects severe enough that we should avoid running them in
Restoring an etcd cluster production, including a data corruption bug 290 . Also, with Kubernetes
Upgrading and rolling back etcd clusters deprecating etcd 2.x support this year 92 and the officially maintained
Notes for etcd Version 2.2.1 etcd versions being 3.1+,

At Netflix, we ...

e Moved to less aggressive reconciliation

e Page on inconsistent data

o Let existing containers run
o Human fixes state and decides how to proceed

e Automated snapshot testing for staging

Security

Reducing container escape vectors

e Enforcement
o Seccomp and AppArmor policies

e Cryptographic identity for each container

o Leveraging host level Amazon and control plane provided identities
o Validated by central Netflix service before secrets are provided

Reducing impact of container escape vectors

User namespaces

e Root (or user) in container != Root (or user) on host
e Challenge: Getting it to work with persistent storage

NAME top

user_namespaces - overview of Linux user namespaces

DESCRIPTION top
For an overview of namespaces, see namespaces(7).

User namespaces isolate security-related identifiers and attributes,
in particular, user IDs and group IDs (see credentials(7)), the root
directory, keys (see keyrings(7)), and capabilities (see
capabilities(7)). A process's user and group IDs can be different
inside and outside a user namespace. In particular, a process can
have a normal unprivileged user ID outside a user namespace while at
the same time having a user ID of 0 inside the namespace; in other
words, the process has full privileges for operations inside the user
namespace, but is unprivileged for operations outside the namespace.

user_namespaces (7)

Lock down, isolate control plane

OpnSec

Open Mind Security!

Exposed Docker APIs Continue to Be

le Flash

Used for Cryptojacking
Into the Borg — SSRF inside Google prodt

By Lawrence Abrams

October 27,2018 09:11 AM @

Fishing for Miners -
Cryptojacking Honeypots in
Kubernetes

e Hackers are scanning for Docker and Kubernetes
e Reported lack of networking isolation in Google Borg
e We also thought our networking was isolated (wasn't)

Avoiding user host level access

Copy titus-ssh command to
clipboard

titustistapp—veas us—east-1 i1-0858c105d2c8chcca
() / #

492-b20905bcfa9a

Titus Task Actions v Insight v

59009eae-f4f4-4127-890
8-26962995a0b3 ’

e

~ INSTANCE INFO Titus Container Dashboard

Perf Vitals Dashboard

Launched 201¢
LW T

Server Group o0sst
Jobld be7(Base Server (Metrics)

Generic App Dashboard

 NETFLIX
Oss

Atlas (Metrics)

Vector

Vector

Scale - Scheduling Speed

How does Netflix failover?

. Amazon Web Services Service Status APP 2:17 PM
A’ Informational message: Increased Error Rates

Netflix regional failover

US-EAST-1

Kong evacuation of us-east-1
Traffic diverted to other regions

T ' v T v ' ' T T ' '
00 15:00 18:00 21:00 Octls 03:00 06:00 09:00 12:00 15:00 18:00 21:00 Octld

=) Fail back to us-east-1
Traffic moved back to us-east-1

API Calls Per Region

Infrastructure challenge

e Increase capacity during scale up of savior region
e Launch 1000s of containers in 7 minutes

Easy Right?

Improving Kubernetes Scheduler Performance

“we reduced time to schedule 30,000
pods onto 1,000 nodes from
8,780 seconds to 587 seconds”

The Million Container Challenge

HashiCorp scheduled 1,000,000 Docker containers on 5,000 hosts
in under 5 minutes with Nomad, our free and open source
cluster scheduler.

Your Docker containers are already fast, at

least compared to virtual machines. But what if
you want to make them even faster? Here are
strategies for optimizing Docker container
speed and performance.

Easy Right?

fast, at

But what if
Y Here are

The M

HashiCorp s¢
inunder 5 m
cluster scheduler.

Titus can do this by ...

e Dynamically changeable scheduling behavior

e Fleet wide networking optimizations

Normal scheduling

IP1 IP1

IP1

AN

Spread Pack

Scheduling Algorithm

IP1 IP1

Trade-off for reliability

Failover scheduling

A

Spread Pack

Scheduling Algorithm

IP1 IP1 IP1 IP1
IP2, IP3 IP2, IP3, IP4 P2, IP3

Trade-off for speed

On each host

e Due to normal scheduling, host likely already has ...

o Docker image downloaded
o Networking interfaces and security groups configured

e Need to burst allocate |IP addresses
o Opportunistically batch allocate at container launch time
o Likely if one container was launched more are coming
o Garbage collect unused later

Results

7500 Launched
In 5 Minutes

us-east-1 / prod
containers started per minute

Scale - Limits

How far can a single Titus stack go?

e Speed and stability of scheduling
e Blast radius of mistakes

Scaling options

|dealistic

Continue to improve
performance

Avoid making mistakes

Realistic

Test a stack up to a
known scale level

Contain mistakes

Titus “Federation”

e Allows a Titus stack to be scaled out
o For performance and reliability reasons

e Not to help with

o Cloud bursting across different resource pools
o Automatic balancing across resource pools
o Joining various business unit resource pools

Federation Implementation

e Users need only to know of the external single API
o VIP - titus-api.us-east-1.prod.netflix.net

e Simple federation proxy spans stacks (cells)

o Route these apps to cell 1, these others to cell 2
o Fan out & union queries across cells
o Operators can route directly to specific cells

Titus Federation

Titus API
(Federation Proxy)

®
P

3399 —

Titus cellO1 Titus cell02

us-west-2

Titus API
(Federation Proxy)

®
P

ssga sssa
S35 Sasn

3339 3339

Titus cell01 Titus cell02

us-east-1

Titus API
(Federation Proxy)

®
.

sdsa sssa
S35 Gasn

3339 3339

Titus cell01 Titus cell02

eu-west-1

How many cells?

A few large cells

e Only as many as needed for scale / blast radius

Why? Larger resource pools help with

e Cross workload efficiency
e Operations
e Bad workload impacts

Performance and Efficiency

Simplified view of a server

'
Packageo Package;

e A fictional “16 vCPU” host

e Left and right are CPU packages
e Top to bottom are cores with hyperthreads

Consider workload placement

ool] o o <~
P L . ((((,‘\\‘

e Consider three workloads

o Static A, B, and C all which are latency sensitive
o Burst D which would like more compute when available

e Let's start placing workloads

Problems

' .
Packageo Package;

e Potential performance problems

o Static C is crossing packages
o Static B can steal from Static C

e Underutilized resources
o Burst workload isn’t using all available resources

Node level CPU rescheduling

Static A

Static C ((((“ﬁ‘

Burst

e After containers land on hosts
o Eventually, dynamic and cross host

e |everages cpusets

o Static - placed on single CPU package and exclusive full cores
o Burst - can consume extra capacity, but variable performance

e Kubernetes - CPU Manager (beta)

Opportunistic workloads

Resources (Total)

/\ Resources (Allocated)
/\/\/\/\/\ Resources (Utilized)

time

Utilization

e Enable workloads to burst into underutilized resources
e Differences between utilized and total

Questions?

Follow-up: @aspyker

