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● Builds Terraform state files by fetching
remote resources, think `$ terraform refresh`

● Manual and distributed changes easily reconciled
when AWS is the source of truth

● Looks like HCL

● github.com/coinbase/geoengineer

GeoEngineer



Applying Resources



Terraform Mars



The Problem
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The Problem (Business units)



The Problem (Platform vs Operations)



The Problem (Did you remember to pull?)



The Problem (Credential proliferation)



The Problem (VPC proliferation)
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Introducing Terraform Earth



Heimdall

● Records PR approvals with MFA

● Provides a clean API

● Not vulnerable to administrative 

Github tampering



Terraform Earth



Single Production Deployment

● One deployment makes updates easier

● New VPCs work without deployment



Flow Diagram



Flow Diagram



Why bother locking?

● Concurrent changes are usually safe

● Sometimes multiple PRs pile up and need to 

modify a resource in order



Flow Diagram



Why SHAs and not ‘master’?

● Master is just a label and moves frequently

● Code has quorum, not labels

● Something could be merged to the repo between 
quorum check and clone



Flow Diagram



Handling Failure

● Retry the GeoEngineer apply with backoff
AWS rate limits heavily
AWS has failures

● Queue and retry
● Replay the webhook using Github administration
● Add an endpoint to manually intervene



Handling Failure

Not great solutions, if you 
have ideas, let me know



Staging Deploys

● Setup a bot with limited privileges
You can test the flow, without breaking everything

We have a separate repository that defines 1 S3 bucket

● Make a periodic cleaner that cleans up test resources
We use lambdas to do this
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Resource Configuration Today
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Ownership



Resource Configuration Today

● project = Project.new(‘infra/heimdall’, aws_accounts)

● project.service_with_elb(‘api’, configuration)

● project.rds_instance(‘db’, configuration)



What’s Wrong?

● Uses language the Infrastructure team knows

● Developer’s mental model of deploys is not represented

● Too many options, very little opinion

● Code is too flexible



Resource Configuration Tomorrow

name: ‘developers/my-service’
services:

- api:
load_balanced: true
accessible_by: [‘developers/my-other-service’]

databases:
- postgres:

        size: medium



Ownership



Ownership



The Future



Design Considerations

● Mono-repo or multi-repo

● Automated workflows (PR bots)

● Exposing the information to outside services



The Other Half

● Provisioning and management is now easy

● Operation is not



Account Stewardship Today
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Account Stewardship Tomorrow



Complications

● Managing connectivity between many VPCs is hard

● Like microservices, finding the right domain is difficult

● How much access is enough access?



Team Scaling
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The Future
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The Future



Secure Infrastructure for Developers

Or: Infrastructure with Vacation



We’re Hiring!

careers.coinbase.com



Questions?

chase.evans@coinbase.com


