
Terraform Earth
Secure Infrastructure for Developers

Chase Evans

Timeline

1. Where we were before May

2. Where we are today

3. Where we are going

Timeline

1. Where we were before May

● Builds Terraform state files by fetching
remote resources, think `$ terraform refresh`

● Manual and distributed changes easily reconciled
when AWS is the source of truth

● Looks like HCL

● github.com/coinbase/geoengineer

GeoEngineer

Applying Resources

Terraform Mars

The Problem

The Problem (Bottlenecking)

The Problem (Bottlenecking)

The Problem (Bottlenecking)

The Problem (Business units)

The Problem (Platform vs Operations)

The Problem (Did you remember to pull?)

The Problem (Credential proliferation)

The Problem (VPC proliferation)

Timeline

1. Where we were before May

2. Where we are today

Introducing Terraform Earth

Heimdall

● Records PR approvals with MFA

● Provides a clean API

● Not vulnerable to administrative

Github tampering

Terraform Earth

Single Production Deployment

● One deployment makes updates easier

● New VPCs work without deployment

Flow Diagram

Flow Diagram

Why bother locking?

● Concurrent changes are usually safe

● Sometimes multiple PRs pile up and need to

modify a resource in order

Flow Diagram

Why SHAs and not ‘master’?

● Master is just a label and moves frequently

● Code has quorum, not labels

● Something could be merged to the repo between
quorum check and clone

Flow Diagram

Handling Failure

● Retry the GeoEngineer apply with backoff
AWS rate limits heavily
AWS has failures

● Queue and retry
● Replay the webhook using Github administration
● Add an endpoint to manually intervene

Handling Failure

Not great solutions, if you
have ideas, let me know

Staging Deploys

● Setup a bot with limited privileges
You can test the flow, without breaking everything

We have a separate repository that defines 1 S3 bucket

● Make a periodic cleaner that cleans up test resources
We use lambdas to do this

Timeline

1. Where we were before May

2. Where we are today

3. Where we are going

Team Scaling

Team Scaling

Team Scaling

Resource Configuration Today

Ownership

Ownership

Resource Configuration Today

● project = Project.new(‘infra/heimdall’, aws_accounts)

● project.service_with_elb(‘api’, configuration)

● project.rds_instance(‘db’, configuration)

What’s Wrong?

● Uses language the Infrastructure team knows

● Developer’s mental model of deploys is not represented

● Too many options, very little opinion

● Code is too flexible

Resource Configuration Tomorrow

name: ‘developers/my-service’
services:

- api:
load_balanced: true
accessible_by: [‘developers/my-other-service’]

databases:
- postgres:

 size: medium

Ownership

Ownership

The Future

Design Considerations

● Mono-repo or multi-repo

● Automated workflows (PR bots)

● Exposing the information to outside services

The Other Half

● Provisioning and management is now easy

● Operation is not

Account Stewardship Today

Account Stewardship Today

Account Stewardship Tomorrow

Complications

● Managing connectivity between many VPCs is hard

● Like microservices, finding the right domain is difficult

● How much access is enough access?

Team Scaling

Team Scaling

The Future

The Future

The Future

The Future

Secure Infrastructure for Developers

Or: Infrastructure with Vacation

We’re Hiring!

careers.coinbase.com

Questions?

chase.evans@coinbase.com

