Presentation: Fairness, Transparency, and Privacy in AI @LinkedIn
This presentation is now available to view on InfoQ.com
Watch video with transcriptAbstract
How do we protect privacy of users in large-scale systems? How do we ensure fairness and transparency when developing machine learned models? With the ongoing explosive growth of AI/ML models and systems, these are some of the ethical and legal challenges encountered by researchers and practitioners alike. In this talk, we will first present an overview of privacy breaches as well as algorithmic bias / discrimination issues observed in the Internet industry over the last few years and the lessons learned, key regulations and laws, and evolution of techniques for achieving privacy and fairness in data-driven systems. We will motivate the need for adopting a "privacy and fairness by design" approach when developing data-driven AI/ML models and systems for different consumer and enterprise applications. We will also focus on the application of privacy-preserving data mining and fairness-aware machine learning techniques in practice, by presenting case studies spanning different LinkedIn applications, and conclude with the key takeaways and open challenges.
Similar Talks
Machine Learning on Mobile and Edge Devices With TensorFlow Lite
Developer Advocate for TensorFlow Lite @Google and Co-Author of TinyML
Daniel Situnayake
Self-Driving Cars as Edge Computing Devices
Sr. Staff Engineer @UberATG
Matt Ranney
CI/CD for Machine Learning
Program Manager on the Azure DevOps Engineering Team @Microsoft
Sasha Rosenbaum
ML's Hidden Tasks: A Checklist for Developers When Building ML Systems
Senior Machine Learning Engineer @teamretrorabbit
Jade Abbott
From POC to Production in Minimal Time - Avoiding Pain in ML Projects
Chief Science Officer @StoryStreamAI
Janet Bastiman
ML in the Browser: Interactive Experiences with Tensorflow.js
Research Engineer in Machine Learning @cloudera
Victor Dibia
Scaling Patterns for Netflix's Edge
Playback Edge Engineering @Netflix
Justin Ryan
Machine Learning 101
Data Scientist @IBM
Grishma Jena
ML/AI Panel
Staff Developer Relations Engineer @Google Cloud Platform